Lecture XI: §2.3 The dot product
Recall Last time we discussed rectors in $2 \&^{3}$ dimensins gemetrically
Algeb naically: $\quad \vec{v}=\left[\begin{array}{l}a \\ b\end{array}\right] m \mathbb{R}^{2} ; \vec{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] m \mathbb{R}^{3}$
Geometrically

Magnitude of $v=\|\vec{v}\|=$ distance (P, Q)

$$
\begin{aligned}
& \vec{v}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \text { an }\|\vec{v}\|=\sqrt{a^{2}+b^{2}} \quad \text { in } \mathbb{R}^{2} \\
& \vec{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { ms }\|\vec{v}\|=\sqrt{a^{2}+b^{2}+c^{2}} \quad \text { in } \mathbb{R}^{3}
\end{aligned}
$$

Genetic interpretation of additim \& scalar multiplication.

Triangle/Parallebaraen Law

$$
\begin{aligned}
& \|a \vec{v}\|=|a|\|\vec{v}\| \text { fo } a \text { in } \mathbb{R} \\
& \text { Dinction of } \vec{a} \vec{v}= \begin{cases}\text { some as } \vec{v} \text { if } a>0 \\
\text { onprite to } \vec{v} & \text { if } a<0 \\
\text { no } \operatorname{dinctem} & \text { if } a=0\end{cases} \\
& \rightarrow \quad(0 . \vec{v}=0)
\end{aligned}
$$

- Basic uni rectors $\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ in \mathbb{R}^{2}

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \vec{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text { in } \mathbb{R}^{3}
$$

- Given $\vec{v} \neq \overrightarrow{\mathbb{D}}$, the is a unique unit rector in the diactime of \vec{v}, namely $\frac{1}{\| \vec{v}} \vec{v}$

Q Midpoint between 2 prints $P \& Q$ in \mathbb{R}^{3} ?

$$
\begin{aligned}
& P=\left(p_{1}, p_{2}, p_{3}\right) \\
& Q=\left(q_{1}, f_{2}, f_{3}\right) \\
& M=\left(m_{1}, m_{2}, m_{3}\right)
\end{aligned}
$$

M has 2 properties

- M in the segment jomeng $P \& Q$

$$
\text { - }\|\overrightarrow{P M}\|=\|\overrightarrow{\pi Q}\|=\frac{1}{2}\|\overrightarrow{P Q}\|
$$

$$
\begin{aligned}
& \overrightarrow{P M}=a \overrightarrow{P Q} \\
& \text { fores } a=\frac{1}{2} \\
& \text { fr sm } a>0 \text { \& }\|\overrightarrow{P M}\|=\|a \overrightarrow{P Q}\|=|a|\|\overrightarrow{P Q}\|=\| \overrightarrow{(\text { same dindim }} \text { as } \overrightarrow{P Q}) \quad \begin{aligned}
\text { \& } & =a\|\overrightarrow{P Q}\|=\frac{1}{2}\|\overrightarrow{P Q}\|
\end{aligned} \\
& \leadsto \quad\left(m_{1}, m_{2}, m_{3}\right)=\left(p_{1}, p_{2}, p_{3}\right)+\frac{1}{2}\left(q_{1}, p_{1}, q_{2}-p_{2}, q_{3}-p_{3}\right)=\left(\frac{p_{1}+q_{1}}{2}, \frac{p_{2}+q_{2}}{2}, \frac{p_{3}+q_{3}}{2}\right)
\end{aligned}
$$

31. Dot Pwouct:

Recall given $\vec{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{m}\end{array}\right], \vec{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{m}\end{array}\right]$ m \mathbb{R}^{m}, we define the
dot product $\vec{u} \cdot \vec{v}=\vec{u}^{\top} \vec{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{m} v_{m} \quad$ (a numb ${ }^{\prime}$ be!.)
Example $\vec{u}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}0 \\ 3 \\ 5\end{array}\right], \vec{u} \cdot \vec{v} 1.0+(-1) \cdot 3+1-5=-3+5=2$
By construction, dot products inherit several peopertas porn matrix addition, scalar multiplication \& product. Mr precisely:

Algebraic poppenties: Fix $\vec{u}, \vec{v}, \vec{\omega}$ rectors $m \mathbb{R}^{n}, a=$ scalar
(1) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u} \quad$ (not the forgeral matrices!)
(2) [Distributive] $(\vec{u}+\vec{v}) \cdot \vec{\omega}=\vec{u} \cdot \vec{\omega}+\vec{v} \cdot \vec{\omega}=\vec{\omega} \cdot(\vec{u}+\vec{v})$
(3) [Associative] $(a \vec{u}) \cdot \vec{v}=a(\vec{u} \cdot \vec{v})=\vec{u} \cdot(a \vec{v})$
(4) $\vec{u} \cdot \vec{u}=\|\vec{u}\|^{2}$

Application: $\quad\|\vec{u}+\vec{v}\|^{2}=$? in terms of $\vec{u} \& \vec{v}$

$$
\begin{aligned}
\|\vec{u}+\vec{v}\|^{2} & =(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})=\overrightarrow{\bar{u}} \cdot \vec{u}+\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{u}+\vec{v} \cdot \vec{v} \\
& =\|\vec{u}\|^{2}+2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2} .
\end{aligned}
$$

Q: Can we compute $\vec{u} \cdot \vec{v}$ in $\mathbb{R}^{2} \& \mathbb{R}^{3}$ using geometiny? A: YES

- Genetic formula for $\vec{u} \cdot \vec{v}$: If $\theta=$ angle between $\vec{u} \& \vec{v} \quad(0 \leqslant \theta \leqslant \pi)$ then $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$

Why? We compute $\|\vec{u}+\vec{v}\|^{2}$ genetically and compare it with the formula written in the application absere.

$$
\begin{aligned}
\|\vec{u}+\vec{v}\|^{2}= & \|\overrightarrow{P R}\|^{2} \\
= & \|\overrightarrow{P S}\|^{2}+\|\overrightarrow{S R}\|^{2} \\
= & (\|\vec{u}\|+\|\vec{v}\| \cos \theta)^{2}+(\|\vec{v}\| \operatorname{sen} \theta)^{2} \\
= & \|\vec{u}\|^{2}+\|\vec{v}\|^{2} \underbrace{\left.\cos ^{2} \theta+\operatorname{sen}^{2} \theta\right)}_{=1} \\
& +2\|\vec{u}\| \vec{v} \| \cos \theta
\end{aligned}
$$

So $\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2\|\vec{u}\|\|\vec{v}\|$ coo
But $\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2 \cdot \vec{u} \cdot \vec{v}$
Conclude: $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$
Examples (1) Pick \vec{u}, \vec{v} of length $3 \& 6$ respectively wist angle $\theta=60^{\circ}$ between them. Find $\vec{u} \cdot \vec{v}$.
$\underline{S \sin } \vec{u} \cdot \vec{v}=\|\vec{u}\| \cdot\|\vec{v}\| \cos 60^{\circ}=3 \cdot 6 \cdot \frac{1}{2}=9$
(2) Find the angle belem $\vec{u}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right] \quad$ \& $\vec{v}=\left[\begin{array}{c}-1 \\ 1 \\ 5\end{array}\right]$

Sole: $\quad\|\vec{u}\|=\sqrt{2^{2}+1^{2}}=\sqrt{5}$

$$
\begin{aligned}
& \|u\|=\sqrt{2}+1^{2}=\sqrt{5} \quad \leadsto \cos \theta=\frac{-1}{\sqrt{5} \sqrt{27}}=\frac{-1}{3 \sqrt{15}} \leadsto \theta \approx 95^{\circ} \\
& \|\vec{r}\|=\sqrt{1^{2}+1^{2}+5^{2}}=\sqrt{27} \\
& \vec{u} \cdot \vec{v}=2 \cdot(-1)+1 \cdot 1+0.5=-1
\end{aligned}
$$

\$2. Onthogral vectors \& projection:
Definition: Two vectors $\vec{u} \& \vec{v}$ are rethoginal (r perpendicular) if $\vec{u} \cdot \vec{v}=0 \quad(\theta$ between them is 0 since $\cos \theta=0)$
We denote this by $\vec{u} \perp \vec{v}$.

- In Physical problems, we sometimes hare To compute the "comprent of \vec{v} along $\vec{u} "$ r the "projection of \vec{v} onto $\vec{u} "$. This costructim will be later use to build orthogmal bases for \mathbb{R}^{n} (Gramm-Schmidt Algorithm)

$0 \leq \theta<90^{\circ}$

$$
\operatorname{comp}_{\vec{u}}^{\vec{v}}=0
$$

$$
\theta=90^{\circ}
$$

$90^{\circ}<\theta \leqslant 180^{\circ}$

- Comprent of \vec{v} along $\vec{u}=\operatorname{com} p_{\vec{u}} \vec{v}=\|\vec{v}\| \cos \theta$

$$
=\|\vec{y}\|\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{y}\|}\right)
$$

Conclude: $\quad \operatorname{comp}_{\vec{u}} \vec{v}=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|}$ (signed length)

- Projection of \vec{v} into $\vec{u}=\left(\begin{array}{c}\text { ampment of } \\ \text { along } \vec{u} \\ \vec{u} \rightarrow \vec{v}\end{array}\right) \cdot\binom{$ unit vector }{ along $\vec{u}}$

$$
=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|} \cdot \frac{\vec{u}}{\|\vec{u}\|}
$$

Conclude: $\operatorname{prog}_{\vec{u}}^{\vec{v}}=\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \vec{u}$

Q: Why is this important? A We con decompose \vec{v} as a seem $\vec{\omega}+\vec{s}$

$$
\left.\begin{array}{ll}
\vec{v}=\vec{\omega}+\vec{s} \\
\vec{v}=\operatorname{prog}_{\vec{u}} \vec{v}+\left(\vec{v}-\operatorname{pog}_{\vec{u}} \vec{v}\right) & \text { where } \vec{\omega} \| \vec{u} \& s \perp \vec{u} \\
\text { (these is the inly } \\
\text { option fo } \vec{\omega} \& \vec{s}
\end{array}\right)
$$

Example 1: Fix $\vec{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ \& $\vec{v}=\left[\begin{array}{l}3 \\ 5\end{array}\right] \quad$ Compute the projection of \vec{v}

$$
\begin{aligned}
& \operatorname{proj}_{\vec{u}} \vec{v}=\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \quad \vec{u}=\frac{1 \cdot 3+1 \cdot 5}{1^{2}+1^{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{8}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right] \\
& =\overrightarrow{o c}
\end{aligned}
$$

Example 2: Compute the projection of $\vec{e}_{1}, \overrightarrow{e_{2}} \& \overrightarrow{e_{3}}$ along $\vec{u}=\left[\begin{array}{c}1 \\ -\frac{1}{2}\end{array}\right]$

$$
\begin{aligned}
& \vec{u} \cdot \vec{u}=\left\|\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]\right\|^{2}=1^{2}+(-1)^{2}+2^{2}=6, \vec{u} \cdot \overrightarrow{e_{1}}=1, \vec{u} \cdot \overrightarrow{e_{2}}=-1, \vec{u} \cdot \vec{e}_{3}=2 \\
& \operatorname{proj}_{\vec{u}} e_{1}=\frac{\vec{u} \cdot \vec{e}_{1}}{\vec{u} \cdot \vec{u}}=\frac{1}{6}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 / 6 \\
-1 / 6 \\
1 / 3
\end{array}\right] \quad \vec{u} \\
& \operatorname{proj}_{\vec{u}} e_{2}=\vec{u} \cdot \overrightarrow{e_{2}} \\
& \vec{u} \cdot \vec{u} \\
& \operatorname{proj}_{\vec{u}} e_{3}=\frac{-1}{6}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 / 6 \\
-1 / 6 \\
-1 / 3 \\
\vec{u} \cdot \vec{u} \\
\vec{e}_{3}
\end{array} \vec{u}=\frac{2}{6}\left[\begin{array}{c}
11 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 / 3 \\
2 / 3 / 3
\end{array}\right]\right.
\end{aligned}
$$

§3. hoss pwoduct in \mathbb{R}^{3} :
Fix, $\vec{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right], \vec{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ in \mathbb{R}^{3}
Definition: The coss poodect $\vec{u} \times \vec{v}$ is a rector m \mathbb{R}^{3} usth cordinates $\vec{u} \times \vec{v}=\left[\begin{array}{c}u_{2} v_{3}-u_{3} v_{2} \\ -\left(u_{1} v_{3}-u_{3} v_{1}\right) \\ u_{1} v_{2}-u_{2} v_{2}\end{array}\right]$

Note: Each compment is a 2×2 determimant $\left[\operatorname{det}\binom{a b}{c d}=\left|\begin{array}{l}a b \\ c d\end{array}\right|=a d-b c\right]$
$\operatorname{det}\left(\begin{array}{ccc}x & y & z \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right)=x\left|\begin{array}{ll}u_{2} & u_{3} \\ v_{2} & v_{3}\end{array}\right|-y\left|\begin{array}{l}u_{1} u_{3} \\ v_{1} v_{3}\end{array}\right|+z\left|\begin{array}{lll}u_{1} u_{2} \\ v_{1} & v_{2}\end{array}\right|$
So $\vec{u} \times \vec{v}=\operatorname{det}\left[\begin{array}{ccc}\vec{\imath} & \vec{j} & \vec{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right]=\underbrace{\left|\begin{array}{ll}u_{2} & u_{3} \\ v_{2} & v_{3}\end{array}\right|}_{\text {scalar }} \underset{\text { scaler }}{\left|\begin{array}{ll}u_{1} & u_{3} \\ v_{1} & v_{3}\end{array}\right|} \underbrace{j}_{\text {scalar }}+\underbrace{\left|\begin{array}{ll}u_{1} & u_{2} \\ v_{1} & v_{2}\end{array}\right| \vec{k}}_{\text {scor }}$
Example $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$

$$
\begin{aligned}
\vec{u} \times \vec{v}=\operatorname{det}\left(\begin{array}{ccc}
i & j & k \\
1 & 2 & 3 \\
2 & -1 & 2
\end{array}\right) & =\left|\begin{array}{cc}
2 & 3 \\
-1 & 2
\end{array}\right| \vec{\imath}-\left|\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right| \bar{k} \\
& =(4+3) \vec{i}-(2-6) \vec{j}+(-1-4) \vec{k}=\left[\begin{array}{c}
7 \\
4 \\
-5
\end{array}\right]
\end{aligned}
$$

Poppties $\vec{u}, \vec{v}, \vec{\omega}$ in \mathbb{R}^{3}, a, b scolars
(1) [Anticommutative] $\vec{u} \times \vec{v}=-\vec{v} \times \vec{u}$ In particurlar, $\vec{u} \times \vec{u}=-\vec{u} \times \vec{u}=\overrightarrow{0}$.
(2) [Associative] $(a \vec{u}) \times(b \vec{v})=(a b) \vec{u} \times \vec{v}$, so $\overrightarrow{0} \times \vec{u}=\overrightarrow{0}$
(3) [Distributive]

$$
\begin{aligned}
& \vec{u} \times(\vec{v}+\vec{w})=\vec{u} \times \vec{v}+\vec{u} \times \vec{w} \\
& (\vec{u}+\vec{v}) \times \vec{w}=\vec{u} \times \vec{w}+\vec{v} \times \vec{w}
\end{aligned}
$$

(4) $\vec{u} \cdot(\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{w}$

Why (1)? $\quad \operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c=-\operatorname{det}\left(\begin{array}{ll}c & d \\ a & b\end{array}\right)$
Conserpence of (4): $\vec{u} \perp \vec{u} \times \vec{v}$ \& $\vec{v} \perp \vec{u} \times \vec{v}$
Why? $\vec{u} \cdot(\vec{u} \times \vec{v})=(\vec{u} \times \vec{u}) \cdot \vec{v}=\overrightarrow{\mathbb{D}} \cdot \vec{v}=0$

$$
\& \vec{v} \cdot(\vec{u} \times \vec{v})=\vec{v} \cdot(-\vec{v} \times \vec{u})=-\vec{v} \cdot(\vec{v} \times \vec{u})=0
$$

same idia

