Lecture XIII: $\$ 2.4$ Limes and planes
Recall, So far, we've studied the flowing 3 operatives is rectors in $\mathbb{R}^{2} \& \mathbb{R}^{3}$ From the geometric perspective
(1) Addition a scalar multiplication (yneralizes to \mathbb{R}^{n})
(2) Dot product (yneraliges to \mathbb{R}^{n})
(3) Coss product (ONLy or \mathbb{R}^{3})

Recall: Fr $\vec{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ \& $\vec{v}=\left[\begin{array}{l}w_{1} \\ r_{2} \\ r_{2}\end{array}\right]$ in \mathbb{R}^{3}, the wars product $\vec{u} \times \vec{r}$ is

$$
\vec{u} \times \vec{v}=\operatorname{det}\left[\begin{array}{ccc}
\vec{\imath} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right]=\underbrace{\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|}_{\text {scalar }} \underset{\imath}{ }-\underbrace{\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|}_{\text {scaler }} \underset{\text { scaler }}{ }+\underbrace{\text { scar }}_{\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \vec{k}}
$$

- $\vec{u} \times \vec{r}$ is \perp to \vec{u}, \vec{r} with dictum given by the right-houd mule
- $\|\vec{u} \times \vec{r}\|=\|\vec{u}\|\|\vec{r}\| \sin \theta$ is $\theta=$ couple between \vec{u} a \vec{r}

Application, compute volumes of parallelopipes

recto forming $P: \vec{u}, \vec{r}, \vec{\omega}$

$$
\operatorname{vol}(p)=|\vec{w} \cdot(\vec{u} \times \vec{v})|
$$

Why is this the?? Key: Cosine formula os dot product $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$

- sine \qquad
- Area of the base of P : Ama of parallelogram framed by $\vec{u} \& \vec{v}$.

$$
\downarrow h=\|\vec{v}\| \sin \theta
$$

$$
\text { Ara }(\square)=\|\vec{u}\| \cdot h=\|\vec{u}\|\|\vec{v}\| \sin \theta=\|\vec{u} \times \vec{v}\|
$$

- Volume $(P)=$ (Area of the base) \times (hight)

Let $\theta^{\prime}=$ angle between $\vec{w} \& \vec{u} \times \vec{v}$

$$
\text { Height }=\|\vec{\omega}\|\left|\cos \theta^{\prime}\right|
$$

Height $\begin{cases}\overrightarrow{\theta^{\prime}} \\ \multicolumn{1}{l}{} \\ \\ & \vec{\omega}\end{cases}$

$$
\begin{aligned}
\operatorname{Vol}(S) & =\underbrace{\|\vec{w}\|\left|\cos \theta^{\prime}\right|}_{\text {Height }} \underbrace{\| \vec{u}}_{\text {a }} \\
& =|\vec{w} \cdot(\vec{u} \times \vec{v})|
\end{aligned}
$$

S1. Limes in \mathbb{R}^{2}
A line $m \mathbb{R}^{2}$ is determined in. 2 ways:
(1) data of 2 different points m it (A, B)

OR
(2) a pt m it and a diction $(A, \vec{v}=\overrightarrow{A B})$

Two diffunt scenarios depending in \vec{v} :

Eft: $y=m\left(x-x_{0}\right)+y_{0}$
with

$E_{q_{n}} \quad x=x_{0}$
(sos $=\infty$)

- Both cases can be written as l : $a x+b y=c$ fr a, b, c in \mathbb{R} where either $a \operatorname{ro} b \neq 0$.

Parametric equation: direction $=\left[\begin{array}{l}x_{1}-x_{0} \\ y_{1}-y_{0}\end{array}\right]$

$$
\begin{aligned}
\overrightarrow{O P} & =\overrightarrow{O A}+t \overrightarrow{A B} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]+t\left[\begin{array}{l}
x_{1}-x_{0} \\
y_{1}-y_{0}
\end{array}\right]
\end{aligned}
$$

oz. Lines in \mathbb{R}^{3} :
A line L in \mathbb{R}^{3} is given by a pint $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ m \mathbb{R}^{3} and a rector $\vec{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ ("sinction rector") "initial pt"
$L=\left\{\right.$ all points Q in \mathbb{R}^{3} where $\overrightarrow{P_{0} Q}$ is parallel to $\left.\vec{v}\right\}$
 propertimal

$$
\begin{aligned}
& P_{0}=\left(x_{0}, y_{0}, z_{0}\right) \\
& P_{1}=\left(x_{1}, y_{1}, z_{1}\right)
\end{aligned} \quad \vec{r}=\overrightarrow{P_{0} P_{1}}
$$

Vector Eq n: $\quad \overrightarrow{O P}=\overrightarrow{O P}_{0}+t \overrightarrow{P P}_{0} \quad$ is $\operatorname{tin} \mathbb{R}$

$$
\left[\begin{array}{l}
x \tag{*}\\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]+t\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Notice. This is similar to how we wite solutires to 2 limes cquatime in 3 vars (1 free pram)"

Another way T_{0} wite L is To eliminate t from the 3 equations in (*)

- If $a, b, c \neq 0: \quad \frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$

Linear system with 3 emus 2 marbles
Sometimes in the literature this is called the "symmetric from of the equs of a line in \mathbb{R}^{3}. This way of writing it realizes L as an intersection of 2 planes.

Examples (1) Find the equation of the line L which is parallel $\tau_{0}\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ \& passes through $(5,0,2)$

$$
\begin{aligned}
& P_{0}=(5,0,2) \quad \vec{v}=\left[\begin{array}{l}
9 \\
5 \\
c
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \\
& \text { - } L:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]+t\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \\
& \cdot \frac{x-5}{1}=\frac{y-0}{2}=\frac{z-2}{-1}
\end{aligned}
$$

(2) Find the intersection of L with the $x y$-plane $X Y$-plane has equation $z=0$, so we get me equatim int

$$
\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]+t\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
5+t \\
2 t \\
2-t
\end{array}\right]
$$

$$
P_{t}=(x, y, 0)=(5+2,2 \cdot 2,0)=(7,4,0)
$$

Altenationly, $\frac{x-5}{1}=\frac{y-0}{2}=\frac{0-2}{-1}=+2 \leadsto \begin{cases}x-5=+2 & x=7 \\ \frac{y}{2}=+2 & y=4\end{cases}$
\$3.Lime Segments:
L Lo $P_{P} P_{1}$ We are only interested in the points along L in between $P_{0} \& P_{1}$
$L: \quad \overrightarrow{O P}=\overrightarrow{O P_{0}}+t \overrightarrow{P_{0} P_{1}} \quad\left(t=0\right.$ fires $P_{0}, \quad t=1$ gives $\left.P_{1}\right)$
This frees as to astrict t to the interval $(0,1]$
Sequent: $\quad \overrightarrow{P_{0} P}=t \vec{P}_{0} P_{1} \quad$ fo $0 \leq t \leq 1$
Special case: Midpoint P between $P_{0} \& P_{1}$ cones from $\overrightarrow{P_{0} P}=\frac{1}{2} \overrightarrow{P_{0} P_{1}}$

$$
\begin{aligned}
& P_{0}=\left(x_{0}, y_{0}, z_{0}\right) \\
& P_{1}=\left(x, y_{1}, z_{1}\right) \\
& P=(x, y, z)
\end{aligned} \quad\left[\begin{array}{l}
x-x_{0} \\
y-y_{0} \\
z-z_{0}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
x_{1}-x_{0} \\
y_{1}-y_{0} \\
z_{1}-z_{0}
\end{array}\right] \quad \text { gives } \quad \begin{aligned}
& x=\frac{x_{0}+x_{1}}{2} \\
& y=\frac{y_{0}+y_{1}}{2} \\
& z=\frac{z_{0}+z_{1}}{2}
\end{aligned}
$$

$\$ 4 . P$ lanes in \mathbb{R}^{3}

- A typical equation of a plane m \mathbb{R}^{3} is

$$
a x+b y+c z=d
$$

(1levear age in e 3 variables)
where either $a, b r \subset \neq 0$

- Geometrically, a place $\Pi \mathrm{m} \mathbb{R}^{3}$ is jose in 2 possible ways:
(1) A print $P_{0} \& 2$ nom-parallel direction $\vec{v} \& \vec{\omega}$.

Equivalently: 3 nm collimator points $P_{0}, Q_{0}, \mathbb{R}_{0}$ in \mathbb{R}^{3}

$$
\left(\vec{v}=\vec{P}_{0} \vec{Q}_{0}, \vec{\omega}=\vec{P}_{0} \vec{R}_{0}\right)
$$

(2) A pint P_{0} \& a normal directive $\vec{\eta}$

- $\vec{\eta}$ rents the plane via the risht-hand rule - $\vec{\eta} \perp \vec{v} \& \vec{\eta} \perp \vec{\omega}$, so we can take $\vec{\eta}=\vec{v} \times \vec{\omega}$ r $\vec{\omega} \times \vec{v}$

Vector equation: $\quad \overrightarrow{P_{0} P} \cdot \vec{\eta}=0$
Explicitly: $P=(x, y, z)$

$$
P_{0}=\left(x_{0}, y_{0}, z_{0}\right)
$$

$$
\vec{x}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \leadsto a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

Examples (1) $X Y$-plane: it has equation $z=0$.
It is the plane passing though $(0,0,0)$ \& perfendicular to $\overrightarrow{e_{3}}=\left[\begin{array}{l}0 \\ 0 \\ i\end{array}\right]$
(2) $2 x+3 y-z=0$ plane
$P_{0}=(0,0,0) \quad$ (easy guess)

$$
\cdot \vec{\eta}=\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right] \quad \text { (fum the equation) }
$$

(3) Find the equation of the plane passing through $(1,0,0),(2,1,-1) \&(111)$
A.

$$
\begin{aligned}
& \text { : } \vec{v}=\overrightarrow{P_{0} Q_{0}}=\left[\begin{array}{cc}
2 & -1 \\
1-0 \\
-1-0
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \\
& \vec{\omega}=\overrightarrow{P_{0} R_{0}}=\left[\begin{array}{cc}
1-1 \\
1-0 \\
1-0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \rightsquigarrow \vec{\xi}=\vec{v} \times \vec{\omega}=\left|\begin{array}{ccc}
i & j & k \\
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right|=i\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right|-j\left|\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right|+k\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|
\end{aligned}
$$

Efuatim: $\quad 2(x-1)+(-1)(y-0)+1(z-0)=0$

$$
2 x-y+z-2=0 \quad \text { } \quad 2 x-y+z=2
$$

Check: $P_{0}, Q_{0} \& R_{0}$ satisfy the equation:

$$
2.1-0+0=2 \checkmark ; \quad 2 \cdot 2-1+(-1)=2 \checkmark, \quad 2-1+1=2 \checkmark
$$

