Lecture XIV: § 24: Planes in
$$\mathbb{R}^{4}$$

 $\Im \Im_{1,3,2}$: \mathbb{R}^{4} as a rector space
 \Im . A typical equation of a plane in \mathbb{R}^{3} is
 $\mathbb{R} \times + \mathbb{b}y + \mathbb{C} \stackrel{?}{\Rightarrow} = \mathbb{d}$ (I leaves equilibre varys:
 $\mathbb{Q} \times + \mathbb{b}y + \mathbb{C} \stackrel{?}{\Rightarrow} = \mathbb{d}$ (I leaves equilibre varys:
 $\mathbb{Q} \times + \mathbb{b}y + \mathbb{C} \stackrel{?}{\Rightarrow} = \mathbb{d}$ (I leaves equilibre varys:
 $\mathbb{Q} \times + \mathbb{b}y + \mathbb{C} \stackrel{?}{\Rightarrow} = \mathbb{d}$ (I leaves equilibre varys:
 $\mathbb{Q} \times + \mathbb{b}y$ int \mathbb{P}_{0} is z non-parallel direction $\mathbb{T} \times \mathbb{d}^{3}$.
 $\mathbb{C} \stackrel{?}{\Rightarrow} \mathbb{C} \stackrel{?}{=} \mathbb{C} \xrightarrow{\mathbb{C}} \mathbb{C} \stackrel{?}{=} \mathbb{C}$
 $\mathbb{C} \stackrel{?}{\Rightarrow} \mathbb{C} \stackrel{?}{=} \mathbb{C} \xrightarrow{\mathbb{C}} \mathbb{C} \stackrel{?}{=} \mathbb{$

(c) Compute the interaction of the plane
$$2x-Y+z=z$$
 with the XY-plane $\begin{bmatrix} 2x-Y+z=z \\ z=0 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} \begin{bmatrix} zx-y+z=z \\ z=0 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} \begin{bmatrix} zx-y+z=z \\ z \end{bmatrix} \begin{bmatrix} x\\ z\\ z \end{bmatrix} \begin{bmatrix} x\\ z\\ z \end{bmatrix} \begin{bmatrix} x\\ z\\ z \end{bmatrix} \begin{bmatrix} z\\ z\\ z \end{bmatrix}$

Recall the seiginal 3 components of this counce LiNEAR SYSTEMS MATRICES VECTOR SPACES Y we are here The Geometry of rectors in TR² a TR³ (including heres & planes) was a

warm-up for the algebra of rectors in n-space, which is our next topic

So far, we have seen 2 constructions;
(1) (Idumm) Vectors in
$$\mathbb{R}^{2}$$
, \mathbb{R}^{3} , \mathbb{R}^{4} ,...
(2) Solutions to homogeneous systems in \mathbb{R}^{n} can be written in vector form as:

$$\begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \chi_{i_{1}} \quad \forall i + \chi_{i_{2}} \quad \forall i + \cdots + \chi_{i_{5}} \quad \forall j \\ \chi_{i_{1}} \quad \chi_{i_{2}} \quad \chi_{i_{2}} \quad \chi_{i_{3}} \quad \chi_{i_{1}} \quad \chi_{i_{1}} + \chi_{i_{2}} \quad \forall i + \cdots + \chi_{i_{5}} \quad \forall j \\ \chi_{i_{1}} \quad \chi_{i_{2}} \quad \chi_{i_{2}} \quad \chi_{i_{3}} \quad \chi_{i_{1}} \quad \chi_{i_{1}} + \chi_{i_{2}} \quad \chi_{i_{2}} + \cdots + \chi_{i_{5}} \quad \forall j \\ \chi_{i_{1}} \quad \chi_{i_{2}} \quad \chi_{i_{2}} \quad \chi_{i_{3}} \quad$$

(cz) If \vec{x} in \vec{V} , then $a \vec{x}$ in \vec{V} for all scalars q. (cz) If \vec{x} in \vec{V} , then $a \vec{x}$ in \vec{V} for all scalars q. (a) $\vec{X} + \vec{y} = \vec{y} + \vec{x}$ (commutative) (A2) $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$ (Associative) [Neutral Elem] (As) \vec{O} satisfies $\vec{x} + \vec{O} = \vec{O} + \vec{x} = \vec{x}$ for all \vec{x} units

[Additive] (A4) Given
$$\vec{X}$$
 in V we can find " $-\vec{X}$ " in V
Satisfying $\vec{X} + (\vec{-X}) = \vec{D}$ (here " $-\vec{X} = (-1)\vec{X}$)
(3) Scalar Multiplication Properties
(11) $a(b\vec{X}) = (ab)\vec{X}$ (Associative)
(112) $a(\vec{X} + \vec{Y}) = a\vec{X} + a\vec{Y}$ (Distributive I)
(113) $(a+b)\vec{X} = a\vec{X} + b\vec{X}$ (——I)
(114) $l\vec{X} = \vec{X}$ frad $l\vec{X}$

Note: (A4) follows fran (cz) + $0 \cdot \vec{x} = \vec{0}$.