Lecture XIV: $\$ 2.4$: Planes in \mathbb{R}^{4}
\& 3.1,3.2: \mathbb{R}^{n} as arector space
\$1. Planes in \mathbb{R}^{3}

- A typical equation of a plane m \mathbb{R}^{3} is

$$
a x+b y+c z=d
$$

(1)lesear aqua in 3 variables)
where rit

- Geometrically, a plane Π m \mathbb{R}^{3} is posen in 2 possible ways:
(1) A print Po \& 2 nm-parallel dinectim $\vec{v} \& \vec{\omega}$.

Equivalently: 3 nm collimate points $P_{0}, Q_{0}, \mathbb{R}_{0}$ in \mathbb{R}^{3}

$$
\left(\vec{v}=\vec{P}_{0} Q_{0}, \vec{\omega}=\vec{P}_{0} \vec{R}_{0}\right)
$$

(2) A pint P_{0} \& a normal directim $\vec{\eta}$

- $\vec{\eta}$ rents the plane via the right-hand rule
$\cdot \vec{\eta} \perp \vec{v}$ \& $\vec{\eta} \perp \vec{\omega}$, so we can take $\vec{\eta}=\vec{v} \times \vec{\omega}$ r $\vec{\omega} \times \vec{v}$
Vector equation:

$$
\overrightarrow{P_{0} P} \cdot \vec{\eta}=0
$$

Explicitly: $P=(x, y, z)$

$$
P_{0}=\left(x_{0}, y_{0}, z_{0}\right)
$$

$$
\vec{x}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] M a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-x_{0}\right)=0
$$

Example, (1) Describe the plane though $(1,0,0),(0,1,0) \&(0,0,1)$

$$
\vec{\imath}=\vec{P}_{0} Q_{0} \times{\overrightarrow{P_{0}}}_{0}=d t\left[\begin{array}{ccc}
i & j & k \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]=i-j(-1)+k=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

A: $\quad 1(x-1)+1(y-0)+1(z-0)=0$ as $x+y+z=1$
(2) Compute the intersection of the plane $2 X-Y+z=2$ with the $X Y$-plane

$$
\left\{\begin{array}{rl}
2 x-y+z=2 \\
z=0
\end{array} \quad \leadsto \quad \begin{array}{l}
2 x-y=2 \quad \text { line in } \mathbb{R}^{2} \\
\\
\end{array}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
2 x-2 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 \\
0
\end{array}\right]+x\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \quad x \text { in } \mathbb{R} . \quad .\right.
$$

Line though $(0,-2,0)$ with dinctin $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$
(3) Compute the intersection of the plane $2 x-y+3=2$ with the bine with diction $\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$ passing though $(3,4,5)$

Parametric exp of the line

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]+t\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
3+2 t \\
4+3 t \\
5+4 t
\end{array}\right]
$$

Substitute these values in the equation of the plane.

OPTION 2
Solve the 3×3 system (2egns of lime)

$$
\left\{\begin{array}{l}
\frac{x-3}{2}=\frac{y-4}{3} \\
\frac{x-3}{2}=\frac{z-5}{4} \\
2 x-y+z=2
\end{array}\right.
$$

Defiaitimes: We say two planes are perpendicular r orthogonal to each other if their normal vectors are orthogonal.

Definition 2: We say two planes are parallel if their normals are proportional Example. $x-y+z=0$ a $2 x-2 y+2 z=5$ are parallel Rearm: $\vec{\eta}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ \& $\vec{\eta}_{2}=\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right]=2 \vec{\eta}_{1}$ so they ane propertinal

In general the angle between 2 planes is the acute angle between their normal rectors.

Example

$$
\begin{array}{lll}
x-y+z=7 & \text { plane 1 } & \vec{\eta}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \\
x+4 y+z=2 & \text { plane z } & \vec{\eta}_{2}=\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]
\end{array}
$$

$$
\overrightarrow{r_{1}} \cdot \vec{\eta}_{2}=1-4+1=-2=\left\|\vec{\eta}_{1}\right\|\left\|\vec{\eta}_{2}\right\| \cos \theta
$$

So $90^{\circ}<\theta<180^{\circ}$

If we use $-\vec{y}_{2}$ weill get the acute angle

$$
\cos \theta=\frac{\vec{n}_{1} \cdot\left(-\vec{r}_{2}\right)}{\left\|\vec{r}_{1}\right\|\left\|\vec{r}_{2}\right\|}=\frac{2}{\sqrt{3} \sqrt{18}} \quad \text { so } \theta=\cos ^{-1}\left(\frac{2}{\sqrt{54}}\right)
$$

oz. Into to \mathbb{R}^{n} as a rector space
Recall the riginal 3 cmpments of this course

The Geometry of rectors in $\mathbb{R}_{A}^{2} \not \mathbb{R}^{3}$ (including lines \& planes) was a warm-up for the algebra of rectors in x-space, which is gun next Topic

So fur, we have seen 2 constrictions:
(1) (Column) Vectors in $\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{4}, \ldots$
(2) Solutions To homogeneous systems in \mathbb{R}^{n} can be written in rector from as:

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{i_{1}} \overrightarrow{v_{1}}+x_{i 2} \overrightarrow{v_{2}}+\cdots+x_{i_{5}} \vec{v}_{s} \quad \begin{aligned}
& \quad \begin{array}{l}
x_{i 1}, x_{i 2}, \ldots, x_{i s} \text { are } \\
\text { the independent } \\
\text { variables of the syst } \left.t_{m}\right)
\end{array}
\end{aligned}
$$

Example: $\left\{\begin{array}{r}x_{1}+x_{2}+2 x_{4}+3 x_{5}=0 \\ x_{3}+x_{4}+x_{5}^{5}=0\end{array} \quad B=\left[\begin{array}{llll|l}11 & 0 & 2 & 3 & 0 \\ 0 & 0 & 1 & 1 & 1\end{array} 000\right] \quad x_{2}, x_{4}, x_{5} \quad\right.$ indup rus

Q: What do these 2 constrectires have in common?

A: $\overrightarrow{(1)}^{(}$lies in the space

- Add Vectors / solutems fires a nee rector/solutim
- Scalar Multiplication preserves vectors / space of solutives

3 basic properties for rector spaces \& subspaces
§ 3. Defining Properties fo \mathbb{R}^{n} (same profecties for abstractrecter sp.)
Thurum 1: Write $V=\mathbb{R}^{n}$. Fr $\vec{x}, \vec{y}, \vec{z}$ in \mathbb{V}, a, b scalars we have,
(1) Closes Properties (C1) If \vec{x}, \vec{y} in \mathbb{V}, then $\vec{x}+\vec{y}$ in V
(cz) If \vec{x} in V, then $a \vec{x}$ in V fo all scalars a.
(2) Addition Properties: (Al) $\vec{x}+\vec{y}=\vec{y}+\vec{x} \quad$ (Commutative)
(Az) $\vec{x}+(\vec{y}+\vec{z})=(\vec{x}+\vec{y})+\vec{z} \quad$ (Associative)
[Neutral) Elem] (A3) $\overrightarrow{0}$ satisfies $\vec{x}+\vec{\infty}=\overrightarrow{0}+\vec{x}=\vec{x}$ for all \vec{x} mil
 satisfiging $\vec{x}+\left({ }^{\prime}-\vec{x}^{\prime}\right)=\overrightarrow{0}$ (here " $-\vec{x} "=(-1) \vec{x}$)
(3) Scalar Multiplication Profetiess
(II) $a(b \vec{x})=$ (ab) $\vec{x} \quad$ (Associative)
(MIR) $a(\vec{x}+\vec{y})=a \vec{x}+a \vec{y}$
(Distributive I)
(MI) $(a+b) \vec{x}=a \vec{x}+b \vec{x}$
(My) $1 \vec{x}=\vec{x}$ foal \vec{x}
Note. (A4) follows from (C2) $+0 \cdot \vec{x}=\overrightarrow{0}$.
\$2. Subspaces of \mathbb{R}^{n}
Definition: A subspace S of \mathbb{R}^{n} is a subset S of \mathbb{R}^{n} that satisfies:
(SI) $\overrightarrow{\mathbb{D}}$ is in S
(S2) for any \vec{u}, \vec{v} in $S, \vec{u}+\vec{v}$ is cos S
(S3) for any scalar a and rector \vec{r} in $S, a \vec{v}$ is in S.
Examples: (1) $S=3 \vec{D} \varepsilon$ is a subspace of \mathbb{R}^{n}
(2) $S=\mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n}
(3) Subspaces of \mathbb{R}^{2} are: $\left.3\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$

- Limes thougle the rising $(2 m 1)$
- \mathbb{R}^{2}
(4) Subspaces of \mathbb{R}^{3} are : $\quad\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
(dime)
- Limes though the origin (die)
- Planes \qquad $(\operatorname{dim} 2)$
- \mathbb{R}^{3}
(din 3)

