Lecture XV: $\S 3.2(\mathbb{T})$ subspace of \mathbb{R}^{n}
§3.3 Examples of subspaces
Last time. We intarlence a rector space structure on \mathbb{R}^{n} ria 10 properties axioms - We _subspaces of \mathbb{R}^{n} a gave examples
si. Subspace of \mathbb{R}^{n} :
Definition: A subspace \mathbb{V} of \mathbb{R}^{n} is a subset S o \mathbb{R}^{n} that satisfies:
(SI) $\overrightarrow{\mathscr{D}}$ is in V
(S2) for any \vec{u}, \vec{v} in $\mathbb{W}, \vec{u}+\vec{v}$ is on W
(ss) for any scalar a and rector \vec{r} in V, $a \vec{v}$ is in V
NM-examples: (1) $\mathbb{N}=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: 2 x+y-z=4\right\}$ is NoT a subspace $f \mathbb{R}^{3}$ because (51) fails ($2 \cdot 0+0-0=0 \neq 9$)
(2) $\mathbb{Y}=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]\right.$: x, y ane integers $\}$ is Not a subspace of \mathbb{R}^{2}

- $\overrightarrow{01}$ in S
- $\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right],\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ in \mathbb{N}, then $\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2}\end{array}\right] \dot{u} \cdot \mathbb{N}$ (con of integers is an integer)
-(S3) fails $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in $\mathbb{M}, a=\frac{1}{2}$ ans $\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$ is not in \mathbb{V}
(3) Unix of z different lines bough $(0,0)$ is not a subspace $E_{x}: V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]\right.$: either $x=0$ or $\left.y=0\right\}=\left\{\left[\begin{array}{l}0 \\ y\end{array}\right]: y\right.$ in $\left.\left.\left.\mathbb{R}\right\} \cup\right\}\left[\begin{array}{l}x \\ 0\end{array}\right] ; \times \min \right\}$
(S2) fails $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ in Y but $\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ ont in Y.

Next: 2 mita examples
S2. Meta Example 1: Solutims to hanog systemes in n variasles.
Therem 1: Solutions to a honogemoes system of m equatims in x verishly form a subspace of \mathbb{R}^{n}.
Why? Write a system $\left[\begin{array}{c}a_{11} x_{1}+\cdots+a_{1 n} x_{n}=0 \\ a_{21}, x_{2}+\cdots+a_{2 n} x_{n}=0 \\ \vdots \\ a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=0\end{array}\right.$ as $A \cdot\left[\begin{array}{l}x_{1} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right]$ 的 $A=\left(a_{i j}\right)_{i, j}$
We oued to check (51), (52) \& (53).
(S1) $\overrightarrow{\mathbb{D}}$ in \mathbb{R}^{n} is a solution becouse $A \cdot\left[\begin{array}{l}0 \\ \vdots \\ \vdots \\ n_{n=1}\end{array}\right]_{m \times 1}=\left[\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right]^{1}$
(s2) Pick $\vec{u} \& \vec{v}$ solutims, ie $A\left[\begin{array}{c}u_{1} \\ \dot{u}_{n}\end{array}\right]=A\left[\begin{array}{c}v_{1} \\ \dot{v}_{n}\end{array}\right]=\left[\begin{array}{c}0 \\ \dot{0} \\ 0\end{array}\right]$
Then $A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}=\left[\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right]$ so $\vec{u}+\vec{r}$ Distributive
is also a solutim.
(S3) Pich a soluction \vec{u} a a scolar a, so $A \vec{u}=\overrightarrow{0}$
Then, $A(a \vec{u})=a(A \vec{u})=a \cdot \overrightarrow{0}=\overrightarrow{0} \quad$ so $a \vec{u}$ is a solutin. scalous
jump

Another name for this subspace $=$ the Null space of the matux $\underset{m \times n}{A}$.

$$
\mathcal{N}(A)=\left\{\left[\begin{array}{l}
x_{1} \\
\vdots \\
\dot{x}_{n}
\end{array}\right] \text { iu } \mathbb{R}^{n}: A\left[\begin{array}{c}
x_{1} \\
\vdots \\
\dot{x}_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] \bar{m} \mathbb{R}^{m}\right\}
$$

$=$ Solutims to the hourg system with coeff matecx A.
§2. Meta Example Z : the s pan of a subset of rectors
Assume we are given miectors $\vec{v}_{l}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ in \mathbb{R}^{n} \& consider the following set

$$
\begin{aligned}
\mathbb{V} & =\text { all possible liner combinations of } \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m} \\
& =\left\{a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{m} \vec{v}_{m} \text { where } a_{1}, a_{2}, \ldots, a_{m} \text { are neal numbers }\right\} \\
& =S_{p}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)
\end{aligned}
$$

We call \mathbb{N} the linear span of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$
Thuoum 2: $S_{p}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$ is a subspace of \mathbb{R}^{n}.
Why? We need to check $(S 1),(52) \&(53)$.
(Si) $\overrightarrow{0} \mathrm{~m} S_{p}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$. be carse $\overrightarrow{\mathbb{O}}=0 \vec{v}_{1}+0 \vec{v}_{2}+\ldots+\overrightarrow{0}_{m}$
(take $a_{1}=a_{2}=\cdots=a_{m}=0$)
(si) Pick $\vec{u}, \vec{\omega}$ in $s_{p}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$, so

$$
\begin{aligned}
\vec{u} & =a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{m} \vec{v}_{m} \quad \text { ps sm } a_{1} \ldots, a_{m} \text { scalars } \\
\vec{w} & =b_{1} \vec{v}_{1}+b_{2} \vec{v}_{2}+\cdots+b_{m} \vec{v}_{m} \quad b_{1}, \ldots, b_{m} \\
\vec{u}+\vec{w} & =\left(a_{1} \vec{v}_{1}+\cdots+a_{m} \vec{v}_{m}\right)+\left(b_{1} \vec{v}_{1}+\cdots+b_{m} \vec{v}_{m}\right) \\
& =\left(q_{2}+b_{1}\right) \vec{v}_{1}+\cdots+\left(a_{m}+b_{m}\right) \vec{v}_{m} \quad \text { is in } \operatorname{sp}\left(\vec{v}_{11}, \ldots, \vec{v}_{m}\right)
\end{aligned}
$$

roup
(S3) Pick $\vec{\omega}$ in $\delta p\left(\vec{r}_{1}, \ldots, \vec{r}_{m}\right)$ \& $\dot{a}=$ scalar.
Then $\vec{\omega}=b_{1} \vec{v}_{1}+\cdots+b_{m} \vec{v}_{m} m>a \vec{\omega}=a\left(b_{1} \vec{v}_{1}+\cdots+b_{m} \vec{v}_{m}\right)$

$$
=\left(a b_{1}\right) \vec{v}_{1}+\cdots+\left(a b_{m}\right) \vec{v}_{m}
$$

cautions a $\vec{\omega}$ in $S_{p}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$

Ex: $\mathbb{V}=$ all limen comb of $\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right] \&\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$ in \mathbb{R}^{3}
$\mathbb{N}=$ plane with dinectins $\left[\begin{array}{c}1 \\ 1 \\ 2\end{array}\right]$ \& $\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$ though $(0,0,0)$
Equation fr $\mathbb{N} ? \quad \vec{\eta}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right] \times\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]=\operatorname{det}\left(\begin{array}{ccc}i & j & k \\ 1 & -1 & 2 \\ 2 & 0 & 3\end{array}\right)=\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right]$
So equation is $-3 x+y+2 z=0$
Obs: $\mathbb{V}=W\left(\left[\begin{array}{l}-3,1,2\end{array}\right]\right)=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]:\left[\begin{array}{lll}-3 & 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=0\right\}$
This is Always TRUE! $\mathcal{P}(A)$ is a lima span of rectors (as many as $\# \operatorname{cols} A$ - $\operatorname{rank} A$).
Example Find rectors spanning $N\left(\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 \\ 0 & 0 & 1\end{array}\right]\right)$

$$
\begin{aligned}
& x_{1}, x_{3} \text { dyendent } \\
& x_{2}, x_{4} \text { independent } \\
& \left\{\begin{aligned}
x_{1}+x_{2}+2 x_{4} & =0 \\
x_{3}+3 x_{4} & =0
\end{aligned} \quad \text { We date the solutions in rector from, using } x_{2} \text { s } x_{4}\right. \text { as ponamiens. } \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-x_{2}-2 x_{4} \\
x_{2} \\
-3 x_{4} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-x_{2} \\
x_{2} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 x_{4} \\
0 \\
-3 x_{4} \\
x_{4}
\end{array}\right]=\underline{x_{2}}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+\frac{x_{4}}{-}\left[\begin{array}{c}
-2 \\
0 \\
-3 \\
1
\end{array}\right]}
\end{aligned}
$$

Candusin: $N(A)=S_{p}\left(\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ -3 \\ 1\end{array}\right]\right)$
§3 Mre examples:
(1) Column Space of an $m \times n$ matrix A. (subspace of \mathbb{R}^{m})

Definition: The range r columenspaa of A is

$$
R(A)=\operatorname{Sp}\left(\operatorname{col}, A, \ldots, \cot _{n} A\right)
$$

By construction it is a subspace of \mathbb{R}^{m} (each coleman has m entries)
(2) Row Space of an $m \times n$ matrix A. (subspace of \mathbb{R}^{m})

Definition : Row Space of A is $R o w S_{p}(A)=S$ san (now rectors of A) sewed as col kites

Example. $A=\left[\begin{array}{llll}1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3\end{array}\right]$

$$
R(A)=S p\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=S_{p}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)
$$

Any rector $\left[\begin{array}{l}x \\ y\end{array}\right]$ in \mathbb{R}^{2} is in $R(A)$. Indect, revealed

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1
\end{array}\right]+0\left[\begin{array}{l}
2 \\
3
\end{array}\right] \quad \text { so } R(A)=\mathbb{R}^{2}=S_{p}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)} \\
\operatorname{RowSp}(A)=\operatorname{Sp}\left(\left[\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
3
\end{array}\right]\right)=R\left(\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\right)=R\left(A^{\top}\right)
\end{gathered}
$$

This is twee in general! \quad Row sp $(A)=R\left(A^{\top}\right)$
So we can just forms m stedijing Ranges of matrices. The same ideas will tans late to now spaces.

