Lecture XVI: $\$ 3.3$ (II) Examples of subspaces
Recall: Last Time we intwoluced 2 meta examples of subspaces
(1) $\mathcal{N}(A)=\left\{\left[\begin{array}{l}x_{1} \\ x_{n} \\ x_{n}\end{array}\right]\right.$ in \mathbb{R}^{n} with $A\left[\begin{array}{l}x_{1} \\ x_{n}\end{array}\right]=\left[\begin{array}{l}0 \\ \dot{0}\end{array}\right]$ in $\left.\mathbb{R}^{m}\right\}$
$=$ solutims to the homogenusus livieas system in n vaviables with cefficinat matux A.
(2) $S_{p}\left(\vec{v}_{1}, \ldots, \overrightarrow{v_{s}}\right)=$ all limen cmbinatims of thenectors $\overrightarrow{v_{1}}, \ldots, \vec{v}_{s}$ in \mathbb{R}^{n}

$$
\left.\overrightarrow{n c} \overrightarrow{v o r}_{0} \dot{n} \mathbb{R}^{n}=3 a_{1} \vec{v}_{1}+\cdots+a_{5} \vec{v}_{s}: a_{1}, \cdots, a_{5} \text { an scalars }\right\}
$$

- Two examples of spans imsoling matrices:

$$
\begin{aligned}
& \operatorname{Range}(A)=\operatorname{Colemnn} \operatorname{Span}(A)=\operatorname{Sp}(\operatorname{Cos}, A, \ldots, \operatorname{Coln} A) \text { subspaced } \mathbb{R}^{n} \\
& \operatorname{Row} \operatorname{Span}(A)=\operatorname{Range}\left(A^{T}\right) \quad\left(\text { subspace of } \mathbb{R}^{m}\right)
\end{aligned}
$$

Theoren: $N(A)$ \& $S_{p}\left(\vec{r}_{1}, \ldots, \overrightarrow{v_{S}}\right)$ are subspaces. of \mathbb{R}^{n}

- By criting the solutions to $A \vec{x}=\vec{\sigma}$ insecter form we con realize $\mathcal{N}(A)$ as a span of retors (\#nectros =\# indipendent veriables)
Q: Can we always ralize spans as rull-spaces of matrices? Equimaluatly, can we find equations fo spans?
A.: YES! We will see how Today!

31. Equations fr spans:

Example!: $A=\left[\begin{array}{cccc}1 & -1 & 1 & 1 \\ 2 & -1 & 4 & 0 \\ 1 & 1 & 5 & -3\end{array}\right] \leadsto R(A)=\operatorname{Sp}\left(\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 5\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]\right)$
Q: What is this subspace?
A A recter $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$ is in $R(A)$ if we can find scalas $x_{1}, x_{2}, x_{3}, x_{4}$ with $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=x_{1} \operatorname{col} A+x_{2} \operatorname{col}_{2} A+x_{3} \operatorname{col}_{3} A+x_{4} \operatorname{col}_{4} A=A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$

To "eliminate" x_{1}, \ldots, x_{4} fum this description, we need to find conditions on y_{1}, y_{2}, y_{3} that ensures the system $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$ car be sobbed W_{l}^{\prime} Ul see how to do this in this example:

$$
\begin{aligned}
& {[A \mid \vec{y}]=\left[\begin{array}{cccc|c}
1 & -1 & 1 & 1 & y_{1} \\
2 & -1 & 4 & 0 & y_{2} \\
1 & 1 & 5 & -3 & y_{3}
\end{array}\right] \underset{\substack{R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}}}{\longrightarrow}\left[\begin{array}{cccc|c}
1 & -1 & 1 & 1 & y_{1} \\
0 & 1 & 2 & -2 & y_{2}-2 y_{1} \\
0 & 2 & 4 & -4 & y_{3}-y_{1}
\end{array}\right]} \\
& \xrightarrow[R_{3} \rightarrow R_{3}-2 R_{2}]{ }\left[\begin{array}{cccc|c}
1 & -1 & 1 & 2 & y_{1} \\
0 & 1 & 2 & -2 & y_{2}-2 y_{1} \\
0 & 0 & 0 & 0 & y_{3}-y_{1}-2\left(y_{2}-2 y_{1}\right)
\end{array}\right]
\end{aligned}
$$

The system has solutions if andmly if the last now is [00000] This says $y_{3}-y_{1}-2\left(y_{2}-2 y_{1}\right)=y_{3}-y_{1}-2 y_{2}+4 y_{1}=3 y_{1}-2 y_{2}+y_{3}=0$

Condusin : $R(A)$ is the plane in \mathbb{R}^{3} with equ $3 y_{1}-2 y_{2}+y_{3}=0$ Iso: $R(A)=\mathcal{N}\left(\left[\begin{array}{lll}3 & -2 & 1\end{array}\right]\right)$

Example 2: $A=\left[\begin{array}{ccc}1 & -4 & 2 \\ -1 & 5 & 2 \\ 2 & -8 & 5\end{array}\right] \quad$ Describe $R(A)$ ria equations.
Again $R(A)$ consists of all column rectors $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ so that $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ is insistent.
To check this, we use Gauss-Jordan eleminatin:

$$
\left[\begin{array}{ccc|c}
1 & -4 & 2 & b_{1} \\
-1 & 5 & 2 & b_{2} \\
2 & -8 & 5 & b_{3}
\end{array}\right] \underset{\substack{R_{2} \rightarrow R_{2}+R_{1}}}{ }\left[\begin{array}{ccc|c}
1 & -4 & 2 & b_{1} \\
0 & 1 & 4 & b_{2}+b_{1} \\
0 & 0 & 1 & b_{3}-2 b_{1}
\end{array}\right]
$$

The system is ALWAYs insistent, with No

Conclusion: $R(A)=\mathbb{R}^{3}$. ustictions $m b_{1}, b_{2}, b_{3}$.

In geneal: Range of A is either $\mathbb{R}^{n} r$ it is the nell-space of a matrix.

with A^{\prime} in reduced eck from and no all zero rows.
The equations fo $R(A)$ are obtain by equating to 0 all the expressing on the lower-riget come (As in Example 2, then could be no curditeras!!)
§2. Spanning sets
Q: What happens to the now space of a matrix under elementary now operations?
A Same row space! (weill see later why)
Advantage: We can use now operations to find a better set of generators $\operatorname{lon} R_{\text {ow }}(A) \&$ in general for $S_{p}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$ in \mathbb{R}^{n}.

$$
A=\left[\begin{array}{c}
\vec{v}_{1}^{t} \\
\vdots \\
\vec{v}_{m}^{t}
\end{array}\right] \xrightarrow{\text { Gave Trepan }} C=\left[\begin{array}{c}
\vec{w}_{1}^{t} \\
\vdots \\
\dot{\vec{w}}_{r}^{t} \\
0 \\
\dot{b}
\end{array}\right] \quad \text { says } \operatorname{Rows}(A)=\operatorname{Rous}(C)
$$

In particular: $\quad S_{p}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)=S_{p}\left(\vec{\omega}_{1}, \ldots, \vec{\omega}_{r}\right) \quad$ (cam impure $\vec{\oplus} / s$ in the span)
Example: $\mathbb{V}=S_{p}\left(\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}3 \\ 5 \\ 5\end{array}\right],\left[\begin{array}{l}-1 \\ -1 \\ -4\end{array}\right]\right)$ (4generatos)
Step (1): Write rectors as the Rows of a matrix $A \quad A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 3 & 5 \\ 3 & 5 & 6 \\ -1 & -1 & -4\end{array}\right] \quad 4 \times 3$
Step (2): Do Gauss Jordan to find $C=R E F(A)$

Step (3): Pick un-zero nous of C \& write them as column rectors.

$$
W=\operatorname{sp}\left(\left[\begin{array}{l}
1 \\
0 \\
7
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right]\right)
$$

2 generators instead of 4

Q: Can we do better?
A No! 2 is the minimal member of generators we need (vectors aril)
These generators han an additimal advantages : we can easily find equations defining \mathbb{V}
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ in \mathbb{V} has the form $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=a\left[\begin{array}{l}1 \\ 0 \\ 7\end{array}\right]+b\left[\begin{array}{c}0 \\ 1 \\ -3\end{array}\right]$ for some a, b
But we see that $a=x, \quad b=4$ \& so $z=7 a-3 b=7 x-3 y$ \rightarrow Equation fr \mathbb{N} is $7 x-3 y-z=0$.

