Lecture XVII: $\$ 3.4$ Bases for subspaces
Last time : . we discussed how to find equations fo subspaces pisen by spamming

- How to find "optimal" spanning sets for $\left.\operatorname{Sp}\left(3 \overrightarrow{v_{1}}, \ldots, \vec{v}_{m}\right\}\right) \dot{m} \mathbb{R}^{\text {sets }}$.

INPUT: $\left\langle\vec{r}_{1}, \ldots, \vec{r}_{m}\left\{\right.\right.$ rectors $m \mathbb{R}^{n}$
OUTPUT: $\left\{\vec{w}_{1}, \ldots, \vec{w}_{s}\right\}$ minimal spanning at for $\mathbb{V}=\operatorname{Sp}\left(\vec{v}_{1}, \ldots, \vec{r}_{m}\right\}$
STEP 1: Write $A=\left[\begin{array}{c}\overrightarrow{v_{i}}, \\ \dot{v}_{m} t\end{array}\right]_{m \times 4 \text { matrix }}$ with RowS $(A)=V$.
STEP 2: Write $\left.\operatorname{REF}(A)=\left[\begin{array}{l}\vec{w}_{1} t \\ \vdots \\ \vec{\omega}_{s} t \\ \Phi_{s} \\ \dot{\theta}\end{array}\right]\right\}$ non-zero nous d $\operatorname{REF}(A)$
Return: $\left\{\vec{w}_{1}, \ldots, \vec{w}_{s}\right\}$
This algorithm works because of the following statement:
Theorem: Row equivalent matrices have equal now space.

$$
\left(A \sim A^{\prime}\right)
$$

Why? It is surugh To check that each elementary sow operation preserves now spaces.

$$
A^{m \times n}=A_{1} \xrightarrow{\text { Elem }} A_{2} \xrightarrow{\text { Elem }} A_{3} \xrightarrow{\text { Elem }} \cdots \cdot \xrightarrow{\text { Elem }} A_{K}=A^{\prime}
$$

Then: $\operatorname{Rowsp}(A)=\operatorname{Row} S_{p}\left(A_{2}\right)=\cdots=\operatorname{Rowsp}\left(A_{k}\right)=\operatorname{Row} S_{p}\left(A^{\prime}\right)$
(EI) [Swap] $\sqrt{ }$ Swap 2 rows readers the rectors spamming the ran space.
(E2) [Scale] Multiply a now (say R_{1}) by a wo -geo number $b, \neq 0$.

$$
\begin{aligned}
& \vec{x} \cdot m S_{p}\left(\vec{R}_{1}^{t}, \ldots, \vec{R}_{m}^{t}\right) \stackrel{?}{=} S_{p}\left(, \vec{R}_{1}^{t}, \vec{R}_{2}^{t}, \ldots, \vec{R}_{m}^{t}\right) \\
& x=\underbrace{a_{1}} \vec{R}_{1}^{t}+\cdots+\underbrace{a_{m}}_{m} \vec{R}_{m}^{t}=\vec{a}^{\frac{a}{b}}\left(\overrightarrow{b R}_{1}^{t}\right)+a_{2} \vec{R}_{2}^{t}+\cdots+\underbrace{}_{m} \vec{R}_{m}^{t}
\end{aligned}
$$

we see how to modify scalars to confirm \underline{x} is in both spaces.
(E3) [Combine] Say we replace $R_{1} \rightarrow R_{1}+b R_{2} \quad$ for $b=$ scalar

$$
\begin{gathered}
S_{p}\left(\vec{R}_{1}^{t}, \ldots, \vec{R}_{m}^{t}\right) \stackrel{?}{=} S_{p}\left(\vec{R}_{1}^{t}+b \vec{R}_{2}^{t}, \vec{R}_{2}^{t}, \ldots, \vec{R}_{m}^{t}\right) \\
\left.\vec{x}=a_{1} \vec{R}_{1}^{t}+\cdots+a_{m} \vec{R}_{m}^{t}=a_{1}\left(\vec{R}_{1}^{t}+b \vec{R}_{2}^{t}\right)+\left(a_{2}-a_{1} b\right) \vec{R}_{2}^{t}+a_{3} \vec{R}_{3}^{t}+\cdots a_{m} \vec{R}_{m}^{t}\right) V
\end{gathered}
$$

we see how to modify scalars to confirm \underline{x} is in both spaces.

Conclusion: $(E X),(E 2) \Delta(E 3)$ changes the vectors individually, but pusures thin span.

Q: In which sense is the output minimal?
A: $\left\{\vec{w}_{1}, \ldots, \vec{w}_{s}\right\}$ an $\ell . i$ (because of the staircase shape of REF N), so there are no relations arming the vectors. In particular, we cannot remove any of them and span the same set. In this sense, the set is minimal
si Bases for subspaces I
Definition: A basis for a subspace N of \mathbb{R}^{4} is a minimal spanning set B for \mathbb{W}. (removing a rector fum the set B will no longer span \mathbb{V})

Later on, well see that minimal spanning sets are always lin. indep.

The algorithm discussed above produces a basis froW.
Example: $\mathbb{V}=S p\left(\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 5\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]\right) \quad$ Find a basis $f s \mathbb{V}$.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-1 & -1 & 1 \\
1 & 4 & 5 \\
1 & 0 & -3
\end{array}\right] \xrightarrow[\substack{R_{2} \\
R_{3} \rightarrow R_{2}+R_{1}-R_{1}}]{\longrightarrow}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 2 & 4 \\
0 & -2 & -4
\end{array}\right] \xrightarrow{R_{4} \rightarrow R_{4}-R_{1}} \boldsymbol{\xrightarrow [R] { R _ { 3 } } \rightarrow R _ { 3 } - 2 R _ { 2 }}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \xrightarrow[{R_{1} \rightarrow R_{1}-2 R_{2}\left[2 R_{2}\right.}]{\longrightarrow}\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Basis $B=\left\{\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$
Charley bi $x_{1}\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]+x_{2}\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}p \\ 0 \\ 0\end{array}\right] \quad$ fires $\left\{\begin{array}{c}x_{1}=0 \\ x_{2}=0 \\ -3 x_{1}+2 x_{2}=0\end{array}\right.$
$\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$ is not in $S_{p}\left(\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]\right)$ \& $\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]$ is not in $S p\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$
So $V \neq S_{p}\left(\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]\right) \varepsilon \quad \mathbb{V} \neq S_{p}\left(\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right)$
Easy to firm equations for \mathbb{N} using B.

$$
\left[\begin{array}{l}
x \\
y \\
y
\end{array}\right]=\frac{a_{1}\left[\begin{array}{l}
1 \\
0 \\
-3
\end{array}\right]+\underset{2}{a_{2}}\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]}{\text { (scalars to find) }} \text { firs }\left\{\begin{array}{l}
x=a_{1} \\
y=a_{2} \\
z=-3 a_{1}+2 a_{2}=-3 x+2 y .
\end{array}\right.
$$

So equation fr \mathbb{V} is $-3 x+2 y-z=0$.
Obsenvatun: The rectput B has nothing to do will the original spanning set of 4 rectors.
Q Can we produce a basis among the rifinal vectors?
A: YES!

- \vec{v}_{1} is in $\operatorname{Sp}\left(\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 5\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]\right)$ ans can nose \vec{v}_{1}

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \stackrel{?}{=} a_{1}\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]+a_{2}\left[\begin{array}{l}
1 \\
4 \\
5
\end{array}\right]+a_{3}\left[\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right]} \\
& {\left[\begin{array}{ccc|c}
-1 & 1 & 1 & 1 \\
-1 & 4 & 0 & 2 \\
1 & 5 & -3 & 1
\end{array}\right] \xrightarrow[R_{1} \leftrightarrow R_{3}]{ }\left[\begin{array}{ccc|c}
1 & 5 & -3 \\
-1 & 4 & 0 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right] \xrightarrow[R_{2} \rightarrow R_{2}+R_{1}]{R_{3} \rightarrow R_{3}+R_{1}}\left[\begin{array}{ccc|c}
1 & 5 & -3 & 1 \\
0 & 9 & -3 & 3 \\
0 & 6 & -2 & 2
\end{array}\right]} \\
& \xrightarrow[R_{2} \rightarrow \frac{R_{2}}{9}]{ }\left[\begin{array}{ccc|c}
1 & 5 & -3 & 1 \\
0 & 1 & -1 / 3 & 1 / 3 \\
0 & 6 & -2 & 2
\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{3}-6 R_{2}]{\longrightarrow}\left[\begin{array}{cccc|c}
1 & 5 & -3 & 1 \\
0 & 1 & -1 / 3 & 1 / 3 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow[R_{1} \rightarrow R_{1}-5 R_{2}]{\longrightarrow}\left[\begin{array}{ccccc}
1 & 0 & -4 / 3 & -2 / 3 \\
0 & 1 & -1 / 3 & -1 / 3 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

So $\begin{array}{rl}a_{1} & =-\frac{2}{3}+\frac{4}{3} a_{3} \\ a_{2} & =-\frac{1}{3}-a_{3}\end{array} \quad$ fr any a_{3} leg $a_{3}=0$ fins $\left.\quad \vec{v}_{1}=-\frac{2}{3} \vec{v}_{2}+\left(\frac{-1}{3}\right) \vec{v}_{3}\right)$
Condusin $S_{p}\left(\vec{r}_{1}, \vec{r}_{2}, \vec{v}_{3}, \vec{v}_{4}\right)=S_{p}\left(\vec{r}_{2}, \vec{r}_{3}, \vec{r}_{4}\right)$
Why?

$$
\begin{aligned}
& b_{1} \vec{v}_{1}+b_{2} \vec{r}_{2}+b_{3} \vec{v}_{3}+b_{4} \vec{r}_{4}=b_{1}\left(-\frac{2}{3} \vec{r}_{2}+\left(-\frac{1}{3}\right) \vec{r}_{3}\right)+ \\
+ & b_{2} \vec{r}_{2}+b_{3} \vec{r}_{3}+b_{4} \vec{r}_{4}=\left(-\frac{2}{3} b_{1}+b_{2}\right) \vec{r}_{2}+\left(b_{3}-\frac{1}{3} b_{1}\right) \overrightarrow{r_{3}}+b_{4} \vec{r}_{4}
\end{aligned}
$$

Shows $S_{p}\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \vec{r}_{4}\right)=S_{p}\left(\vec{r}_{2}, \vec{r}_{3}, \vec{r}_{4}\right)$

- \vec{v}_{2} is in $\operatorname{Sp}\left(\left[\begin{array}{l}1 \\ 4 \\ 5\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]\right) m$ we can rescore \vec{v}_{2}

$$
\begin{aligned}
& {\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right] \stackrel{?}{=} a_{1}\left[\begin{array}{l}
1 \\
4 \\
5
\end{array}\right]+a_{2}\left[\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right]} \\
& {\left[\begin{array}{cc|c}
1 & 1 & -1 \\
4 & 0 & -1 \\
5 & -3 & 1
\end{array}\right] \underset{\substack{R_{2} \rightarrow R_{2}-4 R_{1} \\
R_{3} \rightarrow R_{3}-5 R_{1}}}{\longrightarrow}\left[\begin{array}{cc|c}
1 & 1 & -1 \\
0 & -4 & -3 \\
0 & -8 & 6
\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{3}-2 R_{2}]{\longrightarrow}\left[\begin{array}{cc|c}
1 & 1 & -1 \\
0 & -4 & -3 \\
0 & 0 & 0
\end{array}\right] \xrightarrow[R_{2} \rightarrow \frac{R_{2}}{-4}]{\longrightarrow}\left[\begin{array}{cc|c}
1 & -1 \\
0 & 3 / 3 \\
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

So $\quad a_{1}=-1-a_{2}=-1-\frac{3}{4}=\frac{-7}{4}$

$$
a_{2}=\frac{3}{4}
$$

$$
\vec{v}_{2}=-\frac{7}{4} \vec{v}_{3}+\frac{3}{4} \vec{v}_{4}
$$

Cndusion: $\quad S_{p}\left(\vec{r}_{2}, \vec{r}_{3}, \vec{r}_{4}\right)=S_{p}\left(\vec{r}_{3}, \vec{r}_{4}\right)$
Why? $\quad a \vec{v}_{2}+b \vec{v}_{3}+c \vec{v}_{4}=a\left(-\frac{7}{4} \vec{v}_{3}+\frac{3}{4} \vec{v}_{4}\right)+b \vec{v}_{3}+c \vec{v}_{4}$

$$
=\left(-\frac{7 a}{4}+5\right) \vec{v}_{3}+\left(\frac{3}{4} a+c\right) \vec{v}_{4} .
$$

Conclusion $\mathbb{V}=S_{p}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right)=S_{\rho}\left(\vec{r}_{3}, \vec{r}_{4}\right)$.
, $\left.3 \vec{v}_{3}, \vec{r}_{4}\right\}$ an li, so the set is a minimal spanning set.
si Bases for subspaces II
The example shows a general provider to extract a basés from a spanning set.
INPUT: A spanning set $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ lr a subspace V of \mathbb{R}^{n} OUTPUT: A subset T of S that is a basis fo \mathbb{V}.

STEP (1) Is S li? \longrightarrow If yES, then output S
If no, find a mentrisial relatein
say $a_{1} \vec{r}_{1}+a_{2} \vec{r}_{2}+\cdots+a_{p} \vec{v}_{p}=\overrightarrow{0} \quad$ \& pick first $a_{i} \neq 0$
Frexample, say $a_{1} \neq 0$. Then $\vec{v}_{1}=\frac{-a_{2}}{a_{1}} \vec{v}_{2}+\cdots+\left(\frac{-a_{p}}{a_{1}}\right) \overrightarrow{v_{p}}$

$$
\text { NewS }=\left\{\vec{r}_{2}^{41}, \ldots, \overrightarrow{r_{p}}\right\}
$$

(In geneal new $S=3 \vec{v}_{1}, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{r}_{p}\left\{=S \backslash \mid \vec{v}_{i}\right\}$)
STEP (2) Repent Step 1 fo New S, etc.
Al some point we get a li subset \& this is our output.
Example, $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ -7\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]\right\}$

- S is led Write $7\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+3\left[\begin{array}{c}-1 \\ 0 \\ -7\end{array}\right]+(-2)\left[\begin{array}{l}2 \\ ? \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
- New $S=\left\{\left[\begin{array}{c}-1 \\ 0 \\ -7\end{array}\right],\left[\begin{array}{l}2 \\ 7 \\ 0\end{array}\right]\right\}$ is $l_{i} \quad \vec{v}_{1}=\frac{-3}{7} \vec{r}_{2}+\frac{2}{7} \vec{r}_{3}$.

$$
\begin{aligned}
\left(a \vec{v}_{2}+b \vec{v}_{3}=\overrightarrow{0} \text { fines } \begin{array}{rl}
-a+2 b & =0 \\
2 b & =0 \\
-2 a & =0 \quad \text { so } a=b=0 \text { istherly } \\
\text { solutim }
\end{array}\right) .
\end{aligned}
$$

So News is a basis.
Observe: The algorithm gives a new characterizatim for basis! (output is always l.i.)
Proprition: A set B is a basis fo N if
(1) B is a spanning set
\& (2) B is lindep

