called the standard basis is not a basis for TR2 (d.d.!) $(z) S = \langle [b] [p], [b] \rangle$ A dependency relation is $\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ we can choose to amore any of the sectors. The other 2 are li, so they give a basis: s optims : 3[6][?], 3[6][!]} ח ל[י],[י]} werz worz worr Q: Can we do better than Method 2? A YES, we can do this in 1 step using the following trick Method (3): · View W = Sp(v, . -, vp) as the Range of the motion A = [vi · vp] · Basis = 5 vi : i is a column corresponding to a DEPENDENT remable of $A \begin{bmatrix} x_1 \\ \dot{x} \end{bmatrix} = \vec{O}$ $\underline{Example}: \mathbb{V} = Sp(\begin{bmatrix} 1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ 3 \end{bmatrix}, \begin{bmatrix} 5\\ 5 \end{bmatrix}, \begin{bmatrix} -1\\ -1 \\ -4 \end{bmatrix})$ $\begin{bmatrix} A \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & -1 & | & 0 \\ 2 & 3 & 5 & -1 & | & 0 \\ 1 & 5 & 6 & -4 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 3 & -1 & | & 0 \\ 0 & -1 & -1 & 1 & | & 0 \\ 0 & 3 & 3 & -3 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_3 + 3R_2} \begin{bmatrix} 1 & 2 & 3 & -1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$ $\begin{bmatrix} L_1 & 0 & 1 & -3 & | & 0 \\ R_2 \to R_3 - R_1 & R_2 \to -R_2 & 1 \end{bmatrix}$ $\frac{1}{R_{1} - R_{1} - 2R_{2}} \begin{bmatrix} 1 & 0 & 1 & -3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} REF$ X, X2 dependent no Basis = 3 [2], [3]

for
$$\vec{w}$$
, then taking their difference, we get
 (a_1-b_1) , \vec{v}_1 , $+ \cdots + (a_2-b_2)$, $\vec{v}_3 = \vec{O}$
Sime \vec{v}_1 , ..., \vec{v}_2 are li , we must have $a_1-b_1 = a_2-b_2 = \cdots = a_3-b_3 = o_2$
in other words, $a_1 = b_1$, $a_2 = b_2$, ..., $a_3 = b_4$. This shows the
expression is unique!

Property Z: Size of a basis is fixed
Fix a set
$$S = \{ \overline{w_1}, ..., \overline{w_m} \}$$
 of rectors in W with $m > d$. Then
 S is linearly dependent.
(Compare: $W = iR^n$ $B = 3c_{1,...,}c_n \}$ ($d = n$) standard basis,
any set with $m > n$ elements is always linearly dependent
 $(A \begin{bmatrix} x_1 \\ x_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ with $A = \begin{bmatrix} w_1 & ..., w_m \end{bmatrix}$ is a homogeneous system
with n equations a unknows. But $m > n$ so the system has as-many
solutions in particular $\{w_1, ..., w_m\}$ are $l = d$.

Why? Write each
$$w_1, \dots, w_m$$
 as a linear combination of v_1, \dots, v_d :
 $w_1 = q_{11}v_1 + \dots + q_{1d}v_d$
 $w_2 = q_{21}v_1 + \dots + q_{2d}v_d$ my Build $A = \begin{bmatrix} q_{11} & q_{12} & \dots & q_{1d} \\ \vdots & & & \\ \vdots & & & \\ w_1 = q_{m1}v_1 + \dots + q_{md}v_d \end{bmatrix}$

Whith a relation $X_1 \overline{w}_1 + \cdots + X_m \overline{w}_m = \overline{O}$. Substituting expressions of \overline{w} 's in terms of \overline{v} s gives us q homogeneous system $(a_{11}X_1 + a_{21}X_2 + \cdots + a_{m1}X_m)\overline{v}_1 + (a_{12}X_1 + \cdots + a_{m2}X_m)\overline{v}_2$ $+ \cdots + (a_{12}X_1 + a_{22}X_2 + \cdots + a_{m1}X_m)\overline{v}_d = \overline{O}$

(coefficients on the entries of the non-retor
$$[x_1, \dots, x_m] A = (A^T \begin{bmatrix} x_1 \\ x_m \end{bmatrix})^T$$

But A_{11}, \dots, a_{d_1} and A_{11} , so we get a system :
 $a_{11} x_1 + a_{21} x_2 + \dots + a_{m_1} x_{m_1=0}$
 $a_{12} x_1 + a_{22} x_2 + \dots + a_{m_2} x_{m_1=0}$ $= A^T \begin{bmatrix} x_1 \\ x_m \end{bmatrix} = \vec{0}$
 $a_{1d} x_1 + a_{2d} x_2 + \dots + a_{m_d} x_{m_1=0}$
 $a_{1d} x_1 + a_{2d} x_2 + \dots + a_{m_d} x_{m_1=0}$

Note: A subspace can have money bases, but all of them have the same number of rectors.