Lecture XVIII: $£ 3.4$ Bass for subspaces
\$3.5 Dimension of subspaces
Recall: A basis B fra subspace \mathbb{N} of \mathbb{R}^{n} is a set $\langle w, \ldots, w d\}$ spanning \mathbb{V} \& minimal with this pospecty.

Eferivalently: B is a basis if
(1) B spans \mathbb{V}
(2) B is linearly independent

Obs: $3 \vec{D}\{$ is led, so the subspace $3 \vec{\theta}\}$ has no basis. It is the may subspace with' no basis.
si. Constructing bases:

- We saw two ways to build a basis fr $\mathbb{N}=S_{p}\left(\vec{v}_{1}, \ldots \vec{v}_{m}\right)$

Method (1): $\left.\quad A=\left[\begin{array}{c}\vec{v}_{t}^{t} \\ \vdots \\ \vdots \\ \vec{v}_{m}^{t}\end{array}\right] \xrightarrow[\text { Gamss-Jrdan }]{\longrightarrow} \operatorname{REF}(A)=\left[\begin{array}{c}\vec{w}_{t}^{t} \\ \overrightarrow{\vec{w}}_{d}^{t} \\ \hline 0 \cdots 0 \\ 0 \cdots\end{array}\right]\right]^{\text {minnow }}$ and
$\left.B=3 \vec{w}_{1}, \ldots, \vec{w}_{d}\right\}$ is a basis frVV
Method (2): Remorse vectors fum $S=3 \vec{v}_{1}, \ldots, \vec{v}_{m}$ \& me at a time using limier dependencies
Qi Is $S l_{i}$?

- If yes, then $B=S$

IF NO, then use a dependency to write some ω_{i} in terms of the others, \& expat the gerestion for the New set $\delta^{\prime}=\left\{\vec{v}_{1} \ldots \vec{v}_{i-1}, \vec{r}_{i+1} \ldots, \vec{v}_{n_{2}}\right\}=S 13 v_{i} \delta$.
Example : (1) $\vec{e}_{1}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right], \cdots,\left[\begin{array}{l}0 \\ 0 \\ \dot{e_{2}} \\ 1\end{array}\right]\right\}^{\vec{e}}$ is a basis for $\mathbb{W}=\mathbb{R}^{n}$
called the standard basis
(2) $S=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ is not a basis $f s \mathbb{R}^{2}$

A dependency relation is $\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]+\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
We can chose To umpire any of the sectors. The other 2 are $h i$, so they give a basis:
3 options: $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}, \quad\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}\right.$ or $\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ w \vec{r}_{3} no \vec{r}_{2} no $\overrightarrow{r_{1}}$
Q: Can we do better than Method 2?
A YES, wi can do this in 1 step using the fllowingtick
Method (3):

- View VV $=S_{p}\left(\vec{r}_{1}, \ldots, \vec{v}_{p}\right)$ as the Range of the matrix $\underset{n \times p}{A}=\left[\vec{v}_{1} \cdot \vec{r}_{p}\right]$
- Basis $=\left\{\overrightarrow{v_{i}}: i\right.$ is a collemm conespuding to a DEPENDENT ruable of $\left.A\left[\begin{array}{l}x_{1} \\ \dot{x}\end{array}\right]=\overrightarrow{\mathbb{D}}\right\}$
Example: $\mathbb{V}=S_{p}\left(\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}3 \\ 5 \\ 6\end{array}\right]\left[\begin{array}{c}-1 \\ -1 \\ -4\end{array}\right]\right)$

$$
\begin{aligned}
& \xrightarrow[R_{1} \rightarrow R_{1}-2 R_{2}]{ }\left[\begin{array}{cccc|c}
\begin{array}{c}
L \\
0
\end{array} & 0 & 1 & -3 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \text { REF } \\
& x_{1}, x_{2} \text { dependent } \leadsto s \text { paris }=\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]\right\}
\end{aligned}
$$

Q Why does this work? can use REF (A) insticad

$$
\begin{aligned}
& \mathcal{N u}_{u}\|(A)=\mathcal{N u}\|(\operatorname{REF}(A))=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]: \begin{array}{c}
x_{1}+x_{3}-3 x_{4}=0 \\
x_{2}+x_{3}+x_{4}=0
\end{array}\right\} \\
& \left\{\begin{array}{l}
x_{1}=-x_{3}+3 x_{4} \\
x_{2}=-x_{3}-x_{4}
\end{array} \leadsto\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-x_{3}+3 x_{4} \\
-x_{3}-x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
1
\end{array}\right]\right.
\end{aligned}
$$

This gives 2 dependency relations a mung $\vec{v}_{1}, \vec{r}_{2}, \vec{r}_{3}, \vec{v}_{4}$.

$$
\begin{array}{rlrl}
\overrightarrow{0}=A\left[\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right] & =-\vec{r}_{1}-\vec{r}_{2}+\vec{r}_{3} & \& & \overrightarrow{0}=A\left[\begin{array}{c}
3 \\
-1 \\
0 \\
1
\end{array}\right] \\
\vec{r}_{3}=\vec{r}_{1}+\vec{r}_{2} & \overrightarrow{r_{2}}+\vec{r}_{4} \\
& \rightarrow \overrightarrow{r_{4}}=-3 \overrightarrow{r_{1}}+\vec{r}_{2}
\end{array}
$$

So $S_{p}\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{2}, \vec{v}_{4}\right)=S_{p}\left(\vec{r}_{1}, \vec{r}_{2}\right) \&\left\{\vec{r}_{,}, \vec{r}_{2}\right\}$ is l_{i} so it is a basis fo \mathbb{N}.
sc. Some properties of bases?
Let $B=\left\{\vec{r}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{d}\right\}$ be a basie for V (subspace of \mathbb{R}^{n})
Property 1: Uniqueness of expression
For \vec{w} in \mathbb{V}, we can find uniquely determined numbers. $a_{1}, a_{2}, \ldots, a_{p}$ such that $\vec{\omega}=a_{1} \vec{v}_{1}+\ldots+a_{d} \vec{v}_{d}$ Call them the coordinates of $\vec{\omega}$ with respect to the basis B \& write it as $[\vec{w}]_{B}=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{d}\end{array}\right]\left(\right.$ rector on $\left.\mathbb{R}^{d}\right)$
Why?. We have such expression becocese B spans N.

- If we have 2 such expressions $b_{1} \vec{v}_{1}+\cdots+b_{d} \vec{v}_{d}=a_{1} \vec{v}_{1}+\cdots a_{d} \vec{v}_{d}$
for $\vec{\omega}$, then taking thin difference, we get

$$
\left(a_{1}-b_{1}\right) \vec{v}_{1}+\cdots+\left(a_{d}-b_{d}\right) \vec{v}_{d}=\overrightarrow{\mathbb{D}}
$$

Sine $\vec{v}_{1}, \ldots, \vec{v}_{d}$ ane $l i$, we nest have $a_{1}-b_{1}=a_{2}-b_{2}=\cdots=a_{d}-b_{d}=0$, in other words, $a_{1}=b_{1}, a_{2}=b_{2}, \ldots, a_{d}=b_{d}$. This shows the expression is unique!

Profenty 2: Size of a basis is fixed
Fix a set $S=\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\}$ of rectors in \mathbb{V} with $m>d$. Then S is linearly dependent.
(Compare: $V=\mathbb{R}^{n} \quad B=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\} \quad(d=n)$ standard basso, any set with $m>n$ elements is always bimealy dependent ($\underset{n \times m}{A}\left[\begin{array}{l}x_{1} \\ \dot{x}_{m}\end{array}\right]=\left[\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right]$ with $A=\left[\begin{array}{lll}\vec{w}_{1} & \ldots, & \vec{w}_{m}\end{array}\right]$ is a konogensus system with n equations s unknous. But $m>n$ so the syotum has ∞-many solutions in particular $\left\{\vec{\omega}, \ldots, \vec{\omega}_{m}\right.$ 个 ane ld).

Why? Write each $\vec{w}_{1}, \ldots, \vec{w}_{m}$ as a liner combination of $\vec{v}_{p} \ldots, \vec{v}_{d}$:

$$
\begin{aligned}
& \vec{w}_{1}=a_{11} \vec{v}_{1}+\cdots+a_{1 d} \vec{v}_{d} \\
& \vec{w}_{2}=a_{21} \vec{v}_{1}+\cdots+a_{2 d} \vec{v}_{d} \\
& \dot{\vec{\omega}}=a_{m 1} \vec{v}_{1}+\cdots+a_{m d} \vec{v}_{d} \\
& \text { (using Profenty 1) } \\
& m \text { Build } A=\left[\begin{array}{llll}
a_{11} & q_{12} & \cdots & a_{1 d} \\
\vdots & & \\
\vdots & & \\
a_{m 1} & a_{m 2} & \cdots & -a_{m d}
\end{array}\right]
\end{aligned}
$$

Write a relation $x_{1} \vec{w}_{1}+\cdots+x_{m} \vec{w}_{m}=\overrightarrow{0}$.
Substituting expussinus of $\vec{\omega}$'s in terms of $\vec{v} s$ gives us a homogeneous system.

$$
\begin{aligned}
& \quad\left(a_{11} x_{1}+a_{21} x_{2}+\cdots+a_{m 1} x_{m}\right) \vec{v}_{1}+\left(a_{12} x_{1}+\cdots+a_{m 2} x_{m}\right) \vec{v}_{2} \\
& +\cdots+\left(a_{1 d} x_{1}+a_{2 d} x_{2}+\cdots+a_{m d} x_{m}\right) \vec{v}_{d}=\overrightarrow{\mathbb{D}}
\end{aligned}
$$

(coefficients on the entire of the nowkectr $\left[x_{1} \ldots x_{m}\right] \quad A=\left(A^{\top}\left[\begin{array}{l}x_{1} \\ \dot{x}_{m}\end{array}\right]^{\top}\right.$),
But $\left\{\vec{v}_{1}, \ldots, \vec{v}_{d}\right\}$ an lie, so we get a system:

$$
\begin{aligned}
& a_{11} x_{1}+a_{21} x_{2}+\cdots+a_{m 1} x_{m}=0 \\
& a_{12} x_{1}+a_{22} x_{2}+\cdots+a_{m 2} x_{m}=0 \\
& \vdots \\
& a_{1 d} x_{1}+a_{2 d} x_{2}+\cdots+a_{m d} x_{m}=0
\end{aligned} \quad=\underbrace{A^{T}}_{d x_{m}}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=\overrightarrow{0}
$$

Since dom (\#equs < \#unkwouns) so the system has oo-mony solus. $\left(x_{1}, \ldots, x_{m}\right)$. This says $\left.\mid \vec{w}_{1}, \ldots, \vec{w}_{m}\right\}$ is l.dep.
33. Dimension of a subspace \mathbb{V}.

As a consequence of property 2 , we get.
THEOREM: If $\left.B=3 \vec{v}, \ldots, \vec{v}_{d}\right\}$ are bases $f r W$, then $d=m$ $B_{2}=\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\}$
We call this number the dimension of \mathbb{N}. Write dim $\mathbb{V}=d$.
Why? If dog then B_{2} is ld (un B, isabasis), which comus hopper.
If $q<d$ _ $B_{1} \quad\left(\right.$ ar $\left.B_{2} —\right)$,
Note: A subspace can han many bases, but all of them hate the same number of rectors.

Consequence: $F_{i x} \mathbb{V} \neq\{\vec{\Phi}\}$ a subspace of \mathbb{R}^{n} with $\operatorname{dim} \mathbb{V}=d$. Then:
(1) Any set of $d+1$ rune vectors in $i V 1 s$ lin. dep.
(2) $d-1$ \qquad cannot span \mathbb{V}
\qquad d lim.indep rectos in W is a basis for V.
\qquad d vectors that spans \mathbb{V} is a basis for \mathbb{V}.

Last time we computed a basis fo $V^{2} B=\left\{\left[\begin{array}{l}1 \\ 0 \\ 7\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -3\end{array}\right]\right\}$ so $\operatorname{dim} W=2$

- Consequence (1) confirms $\left\{\vec{v}_{1}, \ldots, \vec{v}_{4}\right\}$ is ℓd
\qquad (2) $\{\vec{v}$,$\} cannot span N$. Same if we pick any individual rector $\left\{\vec{v}_{2}\left\{, 3 \vec{v}_{3}\right\},\left\{\overrightarrow{v_{4}}\right\}\right.$

So it is a basis folly. $\begin{array}{ll}R_{3}^{2} \rightarrow R_{3}-R_{1} & R_{2} \rightarrow R_{2} / 1\end{array}$
Similarly $\left.\left.\left\{\vec{v}_{1}, \vec{v}_{3}\right\},\left\{\vec{v}, \overrightarrow{v_{4}}\right\}, 3 \vec{v}_{2}, \vec{v}_{3}\right\},\left\{\vec{v}_{2}, \vec{v}_{4}\right\}, 3 \vec{v}_{3}, \vec{v}_{4}\right\}$ an li of size 2 , so they are bases for Y.

