Lecture XIX: $\$ 3.5$ Rank-Nallity theorem §3.6 Onthonormal bases
Last time: $\mathbb{V}$ subspace of $\mathbb{R}^{n} \leadsto \operatorname{dim}(\mathbb{V})=$ sizg of any basis for $\mathbb{V}$

- $\mathbb{W}=S_{p}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$
$m$ Basis $=3 v_{i}: x_{i}$ is a dependent vaiable of $A \vec{x}=\vec{ब}\}$
fr $A=\left[\begin{array}{lll}\vec{v}_{1} & \cdots & \vec{v}_{m}\end{array}\right]$
(METHOD 3)
s1. Rank and Nullity:
Fix a matux $A$ of size $n \times m$
Def: mullity $(A)=\operatorname{dim} N(A)$

$$
\operatorname{rank}(A)=\operatorname{dim} \beta(A)
$$

Q How to compute these numbers?
(1) Fr Nullity: Solse the system ria Gauss Jordan
$\leadsto$ mullity $(A)=\#$ indep variables of $A \vec{x}=\vec{\theta}$.
(2) For Rauk: Method 3 says \# of dep. variables = size of a basis for R(A)

Consequence: Rark-Nullity Thurem

$$
\begin{aligned}
& \text { nullity }(A)+\operatorname{rank}(A)=\# \text { columuns of } A . \\
& \text { (\#indep vars) } \quad \text { (\#dep vais) } \quad \text { (total \# of vans) }
\end{aligned}
$$

Example: $A=\left[\begin{array}{cccc}1 & 2 & 3 & -1 \\ 2 & 3 & 5 & -1 \\ 1 & 5 & 6 & -4\end{array}\right] \xrightarrow{\text { Gauss-JORDNN }} \operatorname{REF}(A)=\left[\begin{array}{cccc}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right] \quad x_{1}, x_{2} d p$

- Basis for Range $(A)=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]\right\} \leadsto \operatorname{rank}(A)=2$.
- To jet a basis for $\mathcal{N}(A)$, we write the general form of a sobutem:

$$
\begin{aligned}
& x_{1}+x_{3}+x_{4}=0 \quad \leadsto \quad x_{1}=-x_{3}-x_{4} \\
& x_{2}+x_{3}-x_{4}=0 \quad \leadsto \quad x_{2}=-x_{3}+x_{4}
\end{aligned} \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]_{l_{i}}+x_{4}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]
$$ (implementay loration olos)

$\leadsto$ Basis for $N(A)=\left\{\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 1\end{array}\right]\right\} \quad$ so nullity $(A)=2$
Rank-Nullity: $\quad z+z=4$
Q What about the old definition of rank? (It looks different!)

$$
\begin{aligned}
\text {. Oldrank }(A)=01 d r a n k(\operatorname{REF}(A)) & =\text { \#non-gro nous of } \operatorname{REF}(A) \\
& =\operatorname{Rank}(A)
\end{aligned}
$$

BUT...

$$
\text { - \#nu-zer ions of } \begin{aligned}
\operatorname{REF}(A) & =\text { size of a basis of } \underbrace{\operatorname{Row} S_{p}(A)}_{\text {Row } S_{p}(R E F(A))} \\
& =\operatorname{dim} R o w S_{p}(A) \\
& =\operatorname{din} R\left(A^{\top}\right)=\operatorname{rank}\left(A^{\top}\right)
\end{aligned}
$$

Consequence: $\operatorname{Rarle}(A)=\operatorname{Rank}\left(A^{\top}\right)$, is Coleman 8 now space have the same dimension!

Example above: $A=\left[\begin{array}{llll}1 & 2 & 3 & -1 \\ 2 & 3 & 5 & -1 \\ 1 & 5 & 6 & -4\end{array}\right]$

$$
A^{\top}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 3 & 5 \\
3 & 5 & 6 \\
-1 & -1 & -4
\end{array}\right] \xrightarrow{G-J}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\operatorname{REF}\left(A^{\top}\right)
$$

$$
\begin{aligned}
& \operatorname{din} R_{o w} S_{p}(A)=2=\operatorname{dim}\left(0 S_{p}\left(A^{\top}\right)=\operatorname{Ramk}\left(A^{\top}\right)\right. \\
& \text { by collier calculation } \\
& \operatorname{dim} \operatorname{Row}_{\text {ow }}\left(A^{\top}\right)=2=\operatorname{dim} \operatorname{col} S_{p}(A) \\
&=\operatorname{Rank}_{\text {ark }}(A)
\end{aligned}
$$

Example: $\quad A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 0 & 1\end{array}\right] \quad$ nullity $=$ ?

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 0 & 1
\end{array}\right] \underset{R_{1} \leftrightarrow R_{2}}{\longrightarrow}\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 2 & 3
\end{array}\right] \underset{R_{2} \rightarrow R_{2}-R_{1}}{\longrightarrow}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 2
\end{array}\right] \underset{R_{2} \rightarrow R_{2} / 2}{\longrightarrow}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x_{1}, x_{2} d p} \\
& N(A)=S p\left(\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]\right) \text { so nullity }=1 \quad \text { ms rank }(A)=3-1=2 .
\end{aligned}
$$

. $\operatorname{rark}(A)=\operatorname{dim} R(A) \& R(A)$ is a subspace of $\mathbb{R}^{2}$, also of dim $z$.

Conduce: $R(A)=\mathbb{R}^{2} \quad$ (same dimension \& $R(A) \subseteq \mathbb{R}^{2}$ )

- $\operatorname{nark}\left(A^{\top}\right)=\operatorname{rark}(A)=2$ so $\operatorname{Rowsp}(A)$ has $\operatorname{dim} 2$ as well.
§2. Two applications:
Theorem 1: Fix an m xn matrix $A$ \& $\vec{b}$ in $\mathbb{R}^{m}$. The system $A \vec{x}=\vec{b}$ is consistent if, and may if, $\operatorname{Rank}(A)=\operatorname{Rank}(A \mid b)$.
Why? Consistent means $\vec{b}$ is m $P_{(A)}=\operatorname{col} S_{p}(A)\left(x_{1} \operatorname{Col} A+\cdots+x_{n} \cos _{n} A=\vec{b}\right.$ for some numbers $\left.x_{1}, \ldots, x_{n}\right)$. This happens if and only if $\operatorname{Cols}(A)=\left(d S_{\rho}(A \mid B)\right.$ The ranks ane the dimension of each of these spaces.

Consequence: An nan matrix is nonsimgelar if and rely if rank $(A)=n$. Why? Nasimpular mans nullity $(A)=0$ so $\operatorname{rank}(A)=\#$ cols $(A)$-nell (A) $=n-0=n$.
§3. Orthogonal a orthonormal bases:
Recall the formula for the dot product:
if $\vec{a}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right], \vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ \dot{v}_{n}\end{array}\right]$ ane vectors in $\mathbb{R}^{n}$ (ne) matrices) then

$$
\vec{u} \cdot \vec{v}=\vec{u}^{\top} \vec{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} \quad \text { (number) }
$$

- We say $\vec{u} \& \vec{v}$ au orthogmal $(\vec{u} \perp \vec{v})$ it $\vec{u} \cdot \vec{v}=0$

Es: $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ e $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ are rthogmal

- $\overrightarrow{0} \perp \vec{v}$ for any $\vec{v}$
- Fix a subspace $\mathbb{V}$ of $\mathbb{R}^{n}$ with $\left.\mathbb{V} \neq 3 \vec{\infty}\right\rangle$ \& let $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ be a basis for $\mathbb{N}$.

Def:. We say $B$ is an rthognal basis for $\mathbb{V}$ if $\vec{r}_{i} \perp \vec{r}_{j}$ french (that is, any 2 rectors $m B$ are orthogonal to each ot hen) i $\ddagger$ j.

- We say $B$ is an orthonormal basis for $V$ if it is an orthogmal basis and $v_{i}-v_{i}=1$ fo excel $i=1, \ldots, p$.
(This mans $\left\|r_{i}\right\|=\sqrt{1}=1$ fo every $i$ )
Main use of rthogmality: It implies limes independence.
Theorem: Fix a set $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ in $\mathbb{R}^{n}$ and assume $\vec{D}$ is NDT in $S$. If all rectors of $S$ an rethognal to each other, then $S$ is linearly independent.
Why? Write a dependency relation:

$$
\vec{Q}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+\vec{a}_{p} \vec{v}_{p}
$$

s. tale dot product with $\vec{v}_{1}$. We can distubute a get

$$
0=\overrightarrow{\mathbb{D}} \cdot \vec{v}=a_{1} \underbrace{=0}_{\begin{array}{c}
=\left\|\vec{v}_{1}\right\|^{2} \neq 0 \\
\text { because } \vec{v}_{1} \neq \overrightarrow{0}
\end{array} \vec{v}_{1} \underbrace{\vec{v}_{2} \cdot \vec{v}_{1}}_{=0}+\cdots+a_{p} \underbrace{\vec{v}_{p} \cdot \vec{v}_{1}}_{=0}}
$$

Conclude $0=a_{1} \frac{\left\|\vec{r}_{1}\right\|^{2}}{\neq 0}$ so $a_{1}=0$.
Same idea shows $a_{2}=a_{3}=\cdots=a_{p}=0$. This says $S$ is li.

$$
\left(\cdot \vec{v}_{2}, \cdot \vec{v}_{3}, \ldots, \cdot \vec{v}_{p}\right)
$$

Example: $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}3 \\ -1 \\ -1\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}1 \\ -4 \\ 7\end{array}\right]$

$$
\begin{aligned}
& \overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=1.3-2-1=0 \\
& \overrightarrow{v_{1}} \cdot \overrightarrow{v_{3}}=1-8+7=0 \\
& \overrightarrow{r_{2}} \cdot \overrightarrow{v_{3}}=3+4-7=0
\end{aligned}
$$

$\left.S=3 \vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthogrmal set hence it's linearly independent

This set has 3 li rectors in $\mathbb{R}^{3}$, so it's a bases $\operatorname{tor} \mathbb{R}^{3}$.
. If $\vec{b}=\left[\begin{array}{ll}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ is an aubitnony rector in $\mathbb{R}^{3}$, we car write.

$$
\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3} .
$$

- Here is a prick way to find $x_{1}, x_{2}, x_{3}$ :

Tale dot product with $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$

$$
b_{1}+2 b_{2}+b_{3}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=x_{1} \underbrace{\vec{v}_{1}}_{\left\|\vec{v}_{1}\right\|^{2}=1+4+1=6}+x_{2} \underbrace{\vec{v}_{2} \cdot \vec{v}_{1}}_{=0}+x_{3} \underbrace{\vec{v}_{3} \cdot \vec{v}_{1}}_{=0}
$$

Conclude: $x_{1}=\frac{b_{1}+2 b_{2}+b_{3}}{6}$
Similarly using $\cdot \vec{v}_{2} \& \vec{v}_{3}$ gives $x_{2} \& x_{3}$ :

$$
x_{2}=\frac{3 b_{1}-b_{2}-b_{3}}{11} \quad \& \quad x_{3}=\frac{b_{1}-4 b_{2}+7 b_{3}}{66}
$$

- The set $\left.3 \vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is not an rithonornal basis for $\mathbb{R}^{3}$, but we can scale these rectors to has length 1 \& get an rithonomal bassos

$$
\overrightarrow{u_{1}}=\frac{\vec{r}_{1}}{\left\|\vec{r}_{1}\right\|}=\frac{\vec{v}_{1}}{\sqrt{6}}, \quad \overrightarrow{u_{2}}=\frac{\vec{r}_{2}}{\left\|\overrightarrow{r_{2}^{3}}\right\|}=\frac{\overrightarrow{r_{2}}}{\sqrt{11}}, \vec{u}_{3}=\frac{\vec{v}_{2}}{\left\|\vec{r}_{3}\right\|}=\frac{\vec{r}_{3}}{\sqrt{66}}
$$

$\left.3 \vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ is an rothonornal basis fr $\mathbb{R}^{3}$.
\$3 Coordinates with usfect to rthogmal bases.
The last example highlights that if $\left.B=3 \vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an rithogenal basis for a subspace $V$ of $\mathbb{R}^{y}$, then the problem of writing an abbitian rector $\vec{w}$ of $N$ as a linear comb of $\vec{v}_{1}, \ldots \vec{v}_{p}$ is very easy!

Thoum: If $\left.B=3 \vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an rthogmal basis for a subspace $V$ of $\mathbb{R}^{n}$, a $\vec{\omega}$ is a rector $m \geqslant$, then:

$$
\vec{w}=x_{1} \vec{v}_{1}+\cdots+x_{p} \vec{v}_{p}
$$

where $x_{1}=\frac{\overrightarrow{v_{1}} \cdot \vec{w}}{\vec{v}_{1} \cdot \vec{v}_{1}}, x_{2}=\frac{\vec{v}_{2} \cdot \vec{w}}{\vec{r}_{2} \cdot \vec{v}_{2}^{p}}, \ldots, x_{p}=\frac{\vec{v}_{p} \cdot \vec{w}}{\vec{v}_{p} \cdot \vec{v}_{p}^{p}}-$
In shat $[\vec{w}]_{B}=\left[\begin{array}{c}\vec{v}_{1} \cdot \vec{w} /\left\|\vec{v}_{1}\right\|^{2} \\ \overrightarrow{v_{2}} \cdot \vec{w} /\left\|\vec{v}_{2}\right\|^{2} \\ \vdots \\ \vec{v}_{p} \cdot \vec{\omega} /\left\|\vec{v}_{p}\right\|^{2}\end{array}\right] \quad\left(u \cos\right.$ in $\left.\mathbb{R}^{P}\right)$
Q: How to find an rthogmal basis? A Gram-Schuidt Alforithm (wert time!)

