Lecture $X X 1$: $\$ 3.7$ Limar Trausformations

- So har: we't be studied. \mathbb{R}^{n} \& subspaces of \mathbb{R}^{n} (li, spaning rett, bares, dien) worrematis $\omega c, t$ boces - matrices $\leadsto \mathcal{N}(A), \beta(A)$, Roossp (A).
- Our next gral: irelate subspaces $\left(\nrightarrow \mathbb{R}^{n}\right)$ ria limer functere called limer tronshormations.
- Recall (from Calcules) that a functim $F: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ takes imputs from \mathbb{R}^{n} a sives outputo $m \mathbb{R}^{m}$.

$$
\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \ln ^{n} \leadsto\left[\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
f_{2}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right] m \mathbb{R}^{m}
$$

For excmple: (1) $n=m=1$ (Celculus I) functions of one variable $f(x)$ $x \in \mathbb{R}$ m $n f_{(x)} m \mathbb{R}$
Ef: $\sin (x), x^{2}, 4, e^{x}, 4 x$
(2) $n=2, m=1$ (Calculues IT) functims of 2 variables $f(x, y)$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] m \mathbb{R}^{2} \text { mas } f(x, y) \text { in } \mathbb{R}
$$

$E_{f}: f(x, y)=2 x+4 y, x^{3}-y^{2}, \sin (x+y), \ldots$
(3) $n=3, m=3$ Called Vector Fields in Calcaleso III

Three (=m) functions $f(x, y, z), f(x, y, z), h(x, y, z)$ in $3(=n)$ variables

Ef $\quad\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ in $\mathbb{R}^{3} \leadsto m \quad\left[\begin{array}{l}f(x, y, z) \\ f(x, y, z) \\ h(x, y, z)\end{array}\right]=\left[\begin{array}{c}2 x y+4 \\ \cos \left(x^{3} z\right) \\ 9 y^{2}-4 z\end{array}\right] m \mathbb{R}^{3}$
§1. Lima Transformations:
Liner Transformations are functions from \mathbb{R}^{n} to \mathbb{R}^{m} (or fum subspaces of \mathbb{R}^{n} to \mathbb{R}^{m}) which respect the rector space structure (ie, addition \& scalar multiplication)

Definition: A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a function from $\mathbb{R}^{n} T_{0} \mathbb{R}^{m}$ satishyimg:
(1) $T(\vec{u}+\vec{r})=T(\vec{u})+T(\vec{r}) \quad f \Omega \vec{u}, \vec{r} m \mathbb{R}^{n}$
(2) $T(c \vec{u})=c T(\vec{u})$ fr $\vec{u} m \mathbb{R}^{n}$, scalar.
(Con restrict to subspaces $T: \ V \longrightarrow \mathbb{R}^{m}$ because of (S2) \& (S3) taking \vec{u}, \vec{v} in \mathbb{V})

Al mst none of the above examples an lima transformations. Only $f(x, y)=2 x+4 y: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is. Write $T: \mathbb{R}^{2} \longrightarrow \mathbb{R} T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=2 x+4 y$
Check it's limen.
(1) $T\left(\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]+\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]\right)=T\left(\left[\begin{array}{l}x_{1}+x_{2} \\ y_{1}+y_{2}\end{array}\right]\right)=2\left(x_{1}+x_{2}\right)+4\left(y_{1}+y_{2}\right)$

$$
T\left(\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]\right)+T\left(\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\right)=2 x_{1}+4 y_{1}+2 x_{2}+4 y_{2}=2\left(x_{1}+x_{2}\right)+4\left(y_{1}+y_{2}\right)
$$

(2) $T\left(c\left[\begin{array}{l}x \\ y\end{array}\right]\right)=T\left(\left[\begin{array}{l}c x \\ c y\end{array}\right]\right)=2(\underline{c x})+4(\underline{c y})=c(2 x+4 y)=c T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right.$

The print is: in the picture $\vec{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \leadsto F \Rightarrow\left[\begin{array}{c}f_{1}\left(x_{1}, . . x_{n}\right) \\ \vdots \\ f_{m}\left(x_{1}, \ldots x_{m}\right)\end{array}\right]$
EVERY $f_{1}, f_{2}, \ldots, f_{m}$ has to be a linear expression in $x_{1}, \ldots x_{n}$ without a constant term if F is a lin. transf.

Example (1) Let $F: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \quad F\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x-y \\ 2 y+1\end{array}\right]$
This is NOT a limen Transformation

$$
\begin{aligned}
& \left.F\left(\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]+\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\right)=F\left(\left[\begin{array}{l}
x_{1}+x_{2} \\
y_{1}+y_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
\left(x_{1}+x_{2}\right)-\left(y_{1}+y_{2}\right) \\
2\left(y_{1}+y_{2}\right)+(1)
\end{array}\right] \stackrel{\text { NoT equal }}{ }\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]\right)+F\left(\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
x_{1}-y_{1} \\
2 y_{1}+1
\end{array}\right]+\left[\begin{array}{l}
x_{2}-y_{2} \\
2 y_{2}+1
\end{array}\right]=\left[\begin{array}{l}
x_{1}+x_{2}-y_{1}-y_{2} \\
2\left(y_{1}+y_{2}\right)+(2)
\end{array}\right]
\end{aligned}
$$

(2) $G: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \quad G\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x-y \\ 2 y\end{array}\right]$ is a limen tans.

$$
\begin{aligned}
& G\left(\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]+\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\right)=G\left(\left[\begin{array}{l}
x_{1}+x_{2} \\
y_{1}+y_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+x_{2}-\left(y_{1}+y_{2}\right) \\
2\left(y_{1}+y_{2}\right)
\end{array}\right] \text { N } \quad G\left(\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]\right)+G\left(\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
x_{1}-y_{1} \\
2 y_{1}
\end{array}\right]+\left[\begin{array}{c}
x_{2}-y_{2} \\
2 y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2}-\left(y_{1}+y_{2}\right) \\
2\left(y_{1}+y_{2}\right)
\end{array}\right] \\
& \cdot G\left(c\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=G\left(\left[\begin{array}{l}
c x \\
c y
\end{array}\right]\right)=\left[\begin{array}{c}
c x-c y \\
2(c y)
\end{array}\right]=c\left[\begin{array}{c}
x-y \\
2 y
\end{array}\right]=c G\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)
\end{aligned}
$$

. Find a rector $\left[\begin{array}{l}x \\ y\end{array}\right]$ so that $G\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Sole : $\quad \begin{aligned} x-y & =1 \\ 2 y & =1\end{aligned} \leadsto>y=1 / 2 \leadsto x=1+y=1+1 / 2=3 / 2 \quad$ so $G\left(\left[\begin{array}{l}3 / 2 \\ 1 / 2\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Key: If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a bier transf then $\Pi(\vec{D})=\vec{D}$
 $m \mathbb{R}^{n}=m \mathbb{R}^{m}$

Example abe: $\quad F\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}0-0 \\ 2.0+1\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad \begin{gathered}\text { confirms } \text { F is not a } \\ \text { limes trans }\end{gathered}$ (take $x=y=0$ in the formula)
§2 Main examples:
Warm-up: Ever linear transf $T: \mathbb{R} \longrightarrow \mathbb{R}$ is determined by a nereber
$a m \mathbb{R}: \quad T(x)=a x . \quad(a=T(1))$

- Chech this is a limear Tansf:
(1) $T\left(x_{1}+x_{2}\right)=a\left(x_{1}+x_{2}\right)=a x_{1}+a x_{2}=T\left(x_{1}\right)+T\left(x_{2}\right) \checkmark$
(2) $T(c x)=a(c x)=c(a x)=c T(x) \quad /$
- Now, cleck any biniar Tensformatim $T_{\left.\text {is coupletely determined by } T_{(1)}\right)}^{(x)}$

$$
T(x)=T(x \cdot 1)=x T(1)=a \quad \text {, so } T \text { is of the from }
$$

4 think of x as a s calar $x \operatorname{in} \mathbb{R} m s \operatorname{axin} \mathbb{R}$

- Main example: Fix a maticx A of rize $m \times n$

Define $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ by $T(\vec{x})=A \vec{x}$

Then, T is a limear transhormation by the algeberaic pospecties of matrix oferations (\$1.6). Inded
(1) $T(\vec{u}+\vec{r})=A(\vec{u}+\vec{v})=A \vec{u}+A \vec{r}=T(\vec{u})+T(\vec{r})$
(2) $T(c \vec{u})=A(c \vec{u})=c(A \vec{u})=c T(\vec{u})$.

Example (1) $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 3\end{array}\right] \quad 2 \times 3$ as $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$

$$
T\left(\left[\begin{array}{c}
x_{1} \\
x_{1} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{1} \\
x_{3}^{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{3} \\
-x_{2}+3 x_{3}
\end{array}\right]
$$

Next time :Limar Tanst $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m a n e}$ completely determined by thier volue m a basis tor \mathbb{R}^{n}. (Sane is the is $T: \mathbb{N} \longrightarrow \mathbb{R}^{n}$ fo \mathbb{N} a susbspae of \mathbb{R}^{n})

