Lecture XXII: §3.7 Limar Trousformations
Definition: A lincar tronshormation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a function from \mathbb{R}^{n} To \mathbb{R}^{m} satishying:
(1) $T(\vec{u}+\vec{r})=T(\vec{u})+T(\vec{r}) \quad$ or $\overrightarrow{4}, \vec{r} m \mathbb{R}^{n}$
(2) $T(c \vec{u})=c T(\vec{u})$ fo $\vec{u} m \mathbb{R}^{n}$, cscalar.

31 Examples \& Papputies:
Main example: A m $\times n$ matiox ns $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} T(\vec{x})=A \vec{x}$
Example: (1) $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 3\end{array}\right] 2 \times 3$ as $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+2 x_{3} \\
-x_{2}+3 x_{3}
\end{array}\right]
$$

Note $T\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]=62, A$

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
-1
\end{array}\right]=\operatorname{col}_{2} A \\
& T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\operatorname{cog} A \\
& T\left(\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]\right)=T\left(x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=x_{1} T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)+x_{2} T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)+x_{3} T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right. \\
&=x_{1} \operatorname{col} A+x_{2} \cot A+x_{3} \operatorname{Cot} A \\
& \text { So } T \text { is diter }
\end{aligned}
$$

\leadsto So T is ditermine nace we know $T\left(\vec{e}_{1}\right), T\left(\vec{e}_{2}\right), T\left(\vec{e}_{3}\right)$.
(2) $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ gisen by $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}5 x-3 y \\ 2 x \\ 7 y\end{array}\right]$

Then $T(\vec{x})=A \vec{x}$ fo the following 3×2 matux $A=\left[\begin{array}{cc}5 & -3 \\ 2 & 0 \\ 0 & 7\end{array}\right]$

$$
\left(\operatorname{col}_{1} A=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right), \quad \operatorname{cog}_{2} A=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right)
$$

Prop: Fix \mathbb{V} of subspace of \mathbb{R}^{n} of $\operatorname{dim} p$ Fix a basis $B=3 \vec{v}_{1}, \ldots, \vec{v}_{p}$ \}隹V.
Then any limen transformation $T: \mathbb{V} \longrightarrow \mathbb{R}^{m}$ is anpletely determined by where it sends $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$.

$$
\text { Why? Write } \left.\begin{array}{rl}
\vec{b}_{1} & =T\left(\vec{r}_{1}\right) \\
\vec{b}_{2} & =T\left(\vec{r}_{2}\right) \\
\vdots \\
\overrightarrow{b_{p}} & =T\left(\vec{r}_{p}\right)
\end{array}\right\} \text { p rectos in } \mathbb{R}^{m}
$$

Any \vec{r} in V can be written in a unique way as a linear combs of the basis B :

$$
\vec{v}=a_{1} \vec{r}_{1}+a_{2} \vec{r}_{2}+\cdots+a_{p} \vec{r}_{p} \quad\left(a_{1}, a_{2}, \ldots, a_{p}\right. \text { are numbers, }
$$

Then, using the 2 defining properties of T we get $\left.=[\vec{v}]_{B}\right)$

$$
\begin{aligned}
T(\vec{r}) & =T\left(a_{1} \vec{v}_{1}+\left(a_{2} \vec{r}_{2}+\cdots+a_{p} \vec{v}_{p}\right)\right) \\
& =a_{1} T\left(\vec{r}_{1}\right)+T\left(a_{2} \vec{r}_{2}+\cdots+a_{p} \vec{r}_{p}\right) \\
& =\cdots=a_{1} T\left(\vec{r}_{1}\right)+a_{2} T\left(\vec{r}_{2}\right)+\cdots+a_{p} T\left(\vec{r}_{p}\right) \\
& =a_{1} \vec{b}_{1}+a_{2} \overrightarrow{b_{2}}+\cdots+a_{p} \overrightarrow{b_{p}}
\end{aligned}
$$

Example $\mathbb{V}=S_{p}\left(\overrightarrow{v_{1}}=\left[\begin{array}{c}1 \\ 1 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right)$ on \mathbb{R}^{3}
Note $\left.3 \vec{v}_{1}, \vec{r}_{2}\right\}$ ane $l i$, so they give a basis for \mathbb{V}.
A linear transf $T: N \longrightarrow \mathbb{R}^{2}$ cam be defined by $T\left(\vec{r}_{1}\right)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$

$$
T\left(\vec{r}_{2}\right)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

$T\left(\left[\begin{array}{c}5 \\ -1 \\ 4\end{array}\right]\right)=? \quad$ To answer, we write $\left[\begin{array}{c}5 \\ -1 \\ 4\end{array}\right]=5 \vec{v}_{1}+4 \vec{v}_{2}$.

$$
\text { So } T\left(\left[\begin{array}{c}
5 \\
-1 \\
4
\end{array}\right]\right)=5 T\left(\vec{r}_{1}\right)+4 T\left(\vec{r}_{2}\right)=5\left[\begin{array}{l}
1 \\
2
\end{array}\right]+4\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\left[\begin{array}{l}
13 \\
26
\end{array}\right]
$$

Special case: $V=\mathbb{R}^{n}$

- In particular, if $\mathbb{V}=\mathbb{R}^{n}$ \& $B=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$, then $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ limes is completely determined by $T\left(\overrightarrow{e_{1}}\right) \ldots$. $T\left(\vec{e}_{n}\right)$
If we build an $m \times n$ matrix $A=\left[\begin{array}{llll}\vec{b}_{1} & \overrightarrow{b_{2}} & \ldots \vec{b}_{n}\end{array}\right]$ with $\vec{b}_{i}=T\left(\vec{e}_{i}\right)$ Then $T(\vec{x})=A \vec{x}$

Same idea: $T\left(\left[\begin{array}{l}x_{1} \\ \dot{x}_{n}\end{array}\right]\right)=T\left(x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}+\cdots+x_{n} \vec{e}_{n}\right)$

$$
=x_{1} \underbrace{T\left(\vec{e}_{1}\right)}_{=\vec{b}_{1}}+x_{2} \frac{T\left(\vec{e}_{2}\right)}{=\vec{b}_{2}}+\cdots+x_{n} \underbrace{T\left(\vec{e}_{n}\right)}_{=\vec{b}_{n}}=A \vec{x} .
$$

Cuclusin:
Limen Transf

Impritant Obs: If the input rectors ane l.d, we have to check the in images under T satisfy the sane relation.
Example: Find a linear trousf with $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}5 \\ 4 \\ 6\end{array}\right]$

$$
T\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
6 \\
0 \\
-1
\end{array}\right]
$$

Solution: First 2 vectors an a basis B for \mathbb{R}^{2} so they determine T uniguly:

$$
\begin{aligned}
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)= & T\left((x-y)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \quad\left[\left[\begin{array}{l}
x \\
y
\end{array}\right]\right]_{B}=\left[\begin{array}{c}
x-y \\
y
\end{array}\right] \\
= & (x-y) T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+y T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=(x-y)\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+y\left[\begin{array}{l}
5 \\
4 \\
6
\end{array}\right] \\
= & {\left[\begin{array}{l}
x+4 y \\
2 x+2 y \\
x+3 y
\end{array}\right]=\left[\begin{array}{ll}
1 & 4 \\
2 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] }
\end{aligned}
$$

Check $T\left(\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-1+4 \\ -2+2 \\ -1+3\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right] \neq\left[\begin{array}{c}6 \\ 0 \\ 0\end{array}\right]$ so no T can be constructed!

Issue:

$$
-2\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Applying Tyhould prese
BUT

$$
-2\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
5 \\
4 \\
6
\end{array}\right]-\left[\begin{array}{c}
6 \\
0 \\
-1
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$ the relation, but it doem't

\$2. Matrix Repesentatim
Just like for $\mathbb{R}^{n} \& \mathbb{R}^{m}$, a linear transformation $T: \mathbb{V} \rightarrow W$ where \mathbb{W} \& W an subspaces of $\mathbb{R}^{n} \& \mathbb{R}^{m}$, respectively can ALWAYS be represented by a matrix.

VERY IMPORTANT: The representation of $T: \mathbb{V} \rightarrow \mathbb{W}$ depends in a choice of bases: one $|s| V \&$ one $f s|V|$.
For $\mathbb{V}=\mathbb{R}^{n}$ \& $\mathbb{W}=\mathbb{R}^{m}$ om "natural choices" is $\left\{\overrightarrow{e_{1}}, \ldots, \vec{e}_{u}\right\} f\left(\mathbb{R}^{n}\right.$ $\&\left\{\vec{e}_{1}, \ldots, \vec{e}_{m}\right\}$ 片 \mathbb{R}^{m}

How dos it work?
Fix $B_{1}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ a basis for $\mathbb{W} \quad(\operatorname{dem} V=p)$

$$
B_{2}=\left\{\vec{w}_{1}, \ldots, \vec{\omega}_{q}\right\} \quad-W \quad(\operatorname{dim}(W=q)
$$

To build the matixx, we need to wite the coordinates of $T\left(\vec{r}_{1}\right), \cdots, T\left(\vec{v}_{p}\right)$ writ the basis B_{2}. More precisely:

$$
\begin{aligned}
& T\left(\overrightarrow{r_{1}}\right)=a_{11} \vec{w}_{1}+\cdots+a_{q 1} \vec{w}_{q} \\
& T\left(\overrightarrow{r_{2}}\right)=a_{12} \vec{w}_{1}+\cdots+a_{q 2} \vec{w}_{q} \\
& \vdots\left(\vec{r}_{p}\right)=a_{1 p} \vec{w}_{1}+\cdots+a_{q p} \vec{w}_{q}
\end{aligned} \quad \mu \quad A=\left[\begin{array}{ccc}
a_{11} a_{12} & \cdots a_{1 p} \\
\vdots \\
a_{q 1} & \\
a_{q 2} & \cdots & a_{q p} \\
q \times p
\end{array}\right]
$$

How does A encode the linear Haushormation we started fur?

1. Given \vec{r} in \mathbb{N}, we express $\vec{v}=x_{1} \vec{v}_{1}+\cdots+x_{p} \vec{v}_{p} \quad\left([\vec{r}]_{B}=\left[\begin{array}{l}x_{1} \\ \vdots \\ \dot{x} p\end{array}\right]\right)$
2. Write $\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{q}\end{array}\right]=A\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{p}\end{array}\right]$
3. $T(\vec{r})=y_{1} \vec{w}_{1}+\cdots+y_{q} \vec{w}_{f} \quad\left([T(\vec{r})]_{B_{2}}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{7}\end{array}\right]\right)$

In symbols: $\quad[T(\vec{r})]_{B_{2}}=A[\vec{r}]_{B} \quad\left(\right.$ Write $\left.A=[T]_{B_{2}}\right)$
Examples: $\mathbb{V}=\operatorname{SY}\left(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right)$ subspace of $\mathbb{R}^{3} \quad$ of tim $=2 ., \mathbb{W} \mid=\mathbb{R}^{2}$
$T: \mathbb{V} \longrightarrow \mathbb{W}$ given by $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{l}x+y \\ y+z\end{array}\right]$

- Basis $B_{1}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ for \mathbb{N}, Basis $\left.B_{2}=3 \vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}|\rightarrow| W$

$$
\begin{aligned}
& T\left(\vec{v}_{1}\right)=\left[\begin{array}{c}
1+0 \\
0+1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\vec{e}_{1}+\vec{e}_{2} \\
& T\left(\vec{r}_{2}\right)=\left[\begin{array}{c}
0+1 \\
1+1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\vec{e}_{1}+2 \vec{e}_{2}
\end{aligned} \quad \text { ms }[T]_{\beta_{1} \beta_{2}}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

- Change the basis B_{1} to $B_{1}^{\prime}=\left\{\overrightarrow{u_{1}}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right] ; \vec{u}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]\right\}$

$$
\begin{aligned}
& T\left(\overrightarrow{u_{1}}\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=-\vec{e}_{2} \\
& T\left(\vec{u}_{2}\right)=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=2 \vec{e}_{1}+3 \vec{e}_{2}
\end{aligned} \quad \leadsto \quad[T]_{B_{1}^{\prime} B_{2}}=\left[\begin{array}{cc}
0 & 2 \\
-1 & 3
\end{array}\right]
$$

Check: $\vec{v}=\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]$ in $\mathbb{V} . \quad$ So, from the primula for T we get

$$
\begin{array}{ll}
\vec{r}=2 \vec{v}_{1}+2 \overrightarrow{v_{2}} & \vec{v}=2 \overrightarrow{u_{2}}=0 \cdot \overrightarrow{u_{1}}+2 \cdot \overrightarrow{u_{2}} \\
{\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
6
\end{array}\right]} & {\left[\begin{array}{cc}
0 & 2 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
6
\end{array}\right]} \\
{\left[\begin{array}{ll}
\prime \prime
\end{array}\right]_{B_{1} B_{2}}} & {\left[T_{(\vec{v})}^{\prime \prime}\right]_{B_{2}}}
\end{array}
$$

