Lecture XXIII: §3.7 Rank \& Nullity of Limar Transformations
Recall: 55.1-5.2 Abstract Vector spaces

Definition: A linear transformation $T: \mathbb{V} \longrightarrow \mathbb{W}$ is a function from \mathbb{V} (subspace of $\left.\mathbb{R}^{m}\right)$ to $\mathbb{N X}\left(\right.$ (subspace of $\left.\mathbb{R}^{m}\right)$ satishying:
(1) $T(\vec{u}+\vec{r})=T(\vec{u})+T(\vec{r}) \quad f \Omega \vec{u}, \vec{r} m \mathbb{R}^{n}$
(2) $T(c \vec{u})=c T(\vec{u})$ fr $\vec{u} m \mathbb{R}^{n}$, scalar.

If $\left.\vec{B}_{1}=3 \vec{r}_{1}, \ldots, \vec{r}_{p}\right\}$ is a basis $f>y$ then $\vec{B}_{2}=\left\langle\vec{w}_{1}, \ldots, \vec{w}_{q}\right\}$ \qquad (W)

- T is completely determined by a choice of vectors $T\left(\vec{r}_{1}\right), \ldots, T\left(\vec{r}_{p}\right)$ in W (\& we have heidon of choice)
- T is represented by a $q \times p$ matrix $A=[T]_{B_{1} B_{2}}$ (depending in the cleoice of bases $B_{1} \& B_{2}$). Indeed:

$$
[T(\vec{v})]_{B_{2}}=A[\vec{v}]_{B_{1}}
$$

Ex: $\mathbb{V}=\mathbb{R}^{n}, \| X=\mathbb{R}^{m} \quad B_{1}=\left\{\vec{e}_{1}, \ldots \vec{e}_{n}\right\} \quad T(\vec{x})=A \vec{x}$ then $A=[T]$. $\left.B_{2}=3 \vec{e}_{L}, \ldots, \vec{e}_{m}\right\}$
§1. Rank-Nullity
The Nullspace \& Range of a linear tronstormation are depmed analogeres to their definition for matrices:

Let $T: \mathbb{V} \longrightarrow \mathbb{R}^{m}$ be a linear Tansformatim
Definition: Null space of $T: \quad \mathcal{N}(T)=\{\vec{v}$ in \mathbb{V} such that $T(\vec{V})=\overrightarrow{0}\}$ Range of T : $B(T)=3 \vec{\omega}$ in \mathbb{R}^{m} \qquad $\vec{w}=T(\vec{v})$ $\overrightarrow{b s}$ some \vec{r} in $\mid V\}$

Bothare subspaces mo we can reface $T: \mathbb{N} \rightarrow \mathbb{R}^{m}$
by $T: N \mathbb{W} \longrightarrow \mathbb{W}$ with $\mathbb{W}=B(T)$.
Definition: nullity $(T)=\operatorname{dim}(\mathcal{N}(T)) \operatorname{rank}(T)=\operatorname{dim}(B(T))$
Later in this course we will repose the rank-nullity Theorem.

$$
\text { nullity }(T)+\operatorname{rank}(T)=\operatorname{dim} \mathbb{Y}
$$

Special care: $\mathbb{V}=\mathbb{R}^{n}$ \& $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ given by $T(\vec{x})=A \vec{x}$
Then $\mathcal{N}(T)=\mathcal{N}(A), \quad B(T)=\beta(A)$
$\xi \mathrm{dim}$
$\xi \mathrm{sim}$
nullity $(T)=$ nullity $(A) \quad \operatorname{rank}(T)=\operatorname{rank}(A)$
Rank-Nallity is T is the rouk-wellity theorem for A.
\$2 Abstract Vector Spaces:
So far, we have consider \mathbb{R}^{N} and its subspaces:

- Two main operations on \mathbb{R}^{N} : addition and scalan multiplication satisfying 8 peopecties (Assoc., Distrib, Neutral Element $\vec{\theta}$, additive inverse) [3.2]
- A subspace $V \subseteq \mathbb{R}^{n}$ was defined as subsets containing $\vec{\oplus}$ and "closed under addition \& scalar multiplication?
Punchline: There are many mathematical objects which admit these 2 operatives with the same 10 properties. We call them rector spaces

Examples: $\mathbb{F}=3 f: \mathbb{R} \longrightarrow \mathbb{R}\} \quad$ (ret of all functims of me reliable) (eg $\sin (x), \cos (x), e^{x}, x^{4}+x^{2}+1, \cdots$ are all "elements" of \mathbb{F})

- Functines con be added Together to get new functions scaled by a real number.

Eg: $\quad \operatorname{sen}(x)+e^{x}+\cos (4 x)$
$\sqrt{2} \sin x, 4 e^{x}, \frac{1}{9} \cos (2 x)$
are all elements of F.

Adding additional profecties to our functions will produce subspaces
$\mathbb{F}^{0}=3 f: \mathbb{R} \longrightarrow \mathbb{R}$ contimeress $\& \subset \mathbb{F}$
$\mathbb{F}^{\prime}=\left\{f: \mathbb{R} \longrightarrow \mathbb{R}\right.$ differentiable $\underset{T}{\subset} \mathbb{F}^{\circ}$

Formal definitive: A sector space (over \mathbb{R}) is a set V with 2 operations . addition $V \times V \longrightarrow V$ (elements of V are called

$$
\left(\vec{v}_{1}, \vec{v}_{2}\right) \longmapsto \vec{v}_{1}+\vec{r}_{2}
$$ "rectors")

- scalar multiplication: $\mathbb{R} \times V \longrightarrow V$

$$
(a, \vec{v}) \longmapsto a \cdot \vec{v}
$$

These 2 operations an repeind to satisfy the following 8 propecters
Addition: (A1) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$ fr all $\vec{u}, \vec{r} \mathrm{~cm} V$
(Az) $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$ fr all $\vec{u}, \vec{r}, \vec{w} m V$
(A3) Then is an element $\overrightarrow{\mathbb{D}}$ in $\underset{\rightarrow \rightarrow}{V}$ (Neutral Element) satisfying $\overrightarrow{0}+\vec{r}=\vec{v}+\overrightarrow{\mathbb{D}}=\vec{r}$ fo all \vec{v} mV
(A4) Given $\vec{v} m V$ we can find " \vec{v} " (additive inverse) satisfying $\vec{r}+"-\vec{r} "=\vec{\Phi}$

Scalar Muttiplicatim: (MI) $a(b \vec{v})=(a b) \vec{v} \quad$ f n secy $a, b \mathrm{~m} \mathbb{R}, \vec{r} m V$
(MI) $a(\vec{u}+\vec{r})=a \vec{u}+a \vec{r}$ of every a in $\mathbb{R}, \vec{v} m V$
(113) $(a+b) \vec{v}=a \vec{u}+b \vec{v} \longrightarrow a, b i m \mathbb{R}, \vec{r} m V$
(114) $1 \cdot \vec{v}=\vec{v}$ fo every $\vec{v} m V$

Old Examples: $\cdot \mathbb{R}^{N}$ is a rector space with usual $+\&$ scalar mult. $[\xi 3.2]$

- Mat $\operatorname{man}(\mathbb{R})=$ set of all $m \times n$ matrices is arector space by $\$ 1.6$
- Null space, Rouge \& Row Space of a matrix are rector spaces.

New Examples: $\mathbb{\#}=$ all cont functions $\mathbb{R} \rightarrow \mathbb{R} \quad(\vec{\Phi}=$ zero function $)$

- $C([0,1])=$ all continuraes functions defined on the interval $[0,1]$ ($0 \leqslant x \leqslant 1$)
- $P_{n}=$ all polynomials of degue at most x

$$
\begin{aligned}
= & \left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{0}, \ldots, a_{n} \text { in } \mathbb{R} \text { arbitron }\right\} \\
+ & \frac{a_{0}+a_{1} x+\cdots+a_{n} x^{n}}{} \frac{b_{0}+b_{1} x+\cdots+b_{n} x^{n}}{\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}}
\end{aligned}
$$

Addition

Scalar Multiplication: $\quad c\left(a_{0}+a_{1} x+\cdots+q_{n} x^{n}\right)=\left(c q_{0}\right)+\left(c q_{1}\right) x+\cdots+\left(c q_{n}\right) x^{n}$
Neutral Element: 0 polegromial $=0+0 x+\cdots+0 \cdot x^{n}$
\$3. Subspaces
Fix a rector space V
Definition: A subset W of V is called a subspace if
(SI) \vec{D} in W (here \vec{D} is Neutral Element in V)
(si) \vec{v}_{1}, \vec{r}_{2} in W implies $\vec{r}_{1}+\vec{r}_{2}$ in W
(53) \vec{v} in W, a in \mathbb{R} implies $a \cdot \vec{r}$ in W

Old Examples: Given a matrix A of size $m \times n$

- Wullspace (A) is a subspace of \mathbb{R}^{n}
- Range of $A=B(A)$ is a subspace of \mathbb{R}^{m}

New Examples: $V=\mathbb{T}=$ functions of one variable

- P_{n} = polynomials of dique at must n is a subspace of \mathbb{F}
. $S=\left\{f(x): F^{\prime \prime}=-f\right\}$ is a subspace of \mathbb{F}.
- Non-examples:
(1) $S=3 f(x)$ in $\left.\mathbb{F}: \int_{0}^{1} f(x) d x=1\right\}$

The zeus function is not inS, so (SI) fails
(2) $S=\left\{\right.$ polymmuab P m P_{n} with $\left.P_{(0)}=1\right\}$ is not a subspace becalese (51) fails (zens polynomial is not in S.
(3) $S=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a d-b c \neq 0\right\} \subset \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is wot a subspace
because (SI) fails $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is NOT in S.
$X=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a d-b c=0\right\} \leq$ Mat $_{2 \times 2}(\mathbb{R})$ is not a subspace because (52) fails: $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ both in X but their seen is $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, and I_{2} is Nor in X.

