Lettere XXIII: § 3.7 Rank & Nullity of Lincer Transformations
Recall:

$$g_{SI-S.2}$$
 Nictract Vietor spaces
Definition: A lincer transformation $T: V \longrightarrow W$ is a function
from W (subspace of \mathbb{R}^n) to $W($ (subspace of \mathbb{R}^n) satisfying:
 $O T(\overline{u} + \overline{v}) = T(\overline{u}) + T(\overline{v}) \quad fr \ \overline{u}, v \ \text{in } \mathbb{R}^n$
 $O T(\overline{u} + \overline{v}) = T(\overline{u}) + T(\overline{v}) \quad fr \ \overline{u}, v \ \text{in } \mathbb{R}^n$
 $O T(\overline{u} + \overline{v}) = T(\overline{u}) + T(\overline{v}) \quad fr \ \overline{u}, v \ \text{in } \mathbb{R}^n$
 $O T(\overline{u} + \overline{v}) = T(\overline{u}) + T(\overline{v}) \quad fr \ \overline{u}, v \ \text{in } \mathbb{R}^n$
 $O T(\overline{u} + \overline{v}) = T(\overline{u}) + T(\overline{v}) \quad fr \ \overline{u}, v \ \text{in } \mathbb{R}^n$
 $O T(\overline{v} + \overline{v}) = CT(\overline{v}) \quad fr \ \overline{v} \ \text{in } \mathbb{R}^n$, c scalar
 $T(\overline{v}, \overline{v}) = cT(\overline{v}) \quad fr \ \overline{v} \ \text{in } \mathbb{R}^n$, c scalar
 $T(\overline{v}, \overline{v}) = cT(\overline{v}) \quad fr \ \overline{v} \ \text{in } \mathbb{R}^n$, c scalar
 $T(\overline{v}, \overline{v}) = cT(\overline{v}) \quad fr \ \overline{v} \ \text{in } \mathbb{R}^n$
 V
 T is computely determined by a choice of victors $T(\overline{v}_1), \cdots, T(\overline{v}_p)$ in W
(a we have breader of choice)
 T is supmembed by a $q \ge p$ metrice $A = [T]_{B_1B_2}$ (depending
 n the choice of bases $B_1 \ge B_2$). Indeed:
 $E T(\overline{v})]_{B_2} = A [\overline{v}]_{B_1}$
 \overline{Ex} ; $W = \mathbb{R}^n$, $Nt = \mathbb{R}^m$, $B_1 = 1\overline{c}_1 \cdots \overline{c}_{n-1}$ (B contraction $T(\overline{v}) = A\overline{x}$ then $A = [T]$.
 $B_{2-3} \in U^{-1} \in \mathbb{R}^n$ (B contraction of dependent A)
 $\overline{S} 1.7 \operatorname{out} - Nullity$
The Nullspace A forege of a linear transformation are defined analogous To
their definition for matrices:
Let $T: N \longrightarrow \mathbb{R}^m$ be a linear transformation
 $\overline{S} = T(\overline{v}) = \overline{O}^*$
 $\operatorname{Reuge} of T: T(T) = \frac{1}{2} \overline{w}$ in $\mathbb{R}^m \longrightarrow \overline{v} = T(\overline{v})$
 $\operatorname{how} \operatorname{sure} T(\overline{v} u, V)$

Both an subspaces we we can uplace
$$T: \mathbb{N} \to \mathbb{N}^m$$

by $T: \mathbb{N} \to \mathbb{N}$ with $\mathbb{W} = \mathcal{R}(T)$.
Definition: nullity $(T) = \dim(\mathcal{W}(T))$ rank $(T) = \dim(\mathcal{R}(T))$
Later in this course we will reprove the rank-nullity Theorem.
nullity $(T) + \operatorname{nonk}(T) = \dim \mathbb{N}$
Special case: $\mathbb{N} = \mathbb{R}^m$ & $T: \mathbb{R}^m \to \mathbb{R}^m$ given by $T(x^n) = Ax^n$
Then $\mathcal{W}(T) = \mathcal{W}(A)$, $\mathcal{R}(T) = \mathcal{R}(A)$
so dim
nullity $(T) = \operatorname{nullity}(A)$ noule $(T) = \operatorname{nank}(A)$
Rank-Nullity $frs T$ is the nonk-nullity theorem for A .

So fer, we have consider \mathbb{R}^N and its subspaces: • Two main operations on \mathbb{R}^N : <u>addition</u> and <u>scalar multiplication</u> satisfying 8 projections (Assoc., Distrib, Nuntral Element \overline{O} , additive inverse) [§ 3.2] • A subspace $V \subseteq \mathbb{R}^n$ was defined as subsets intaining \overline{O} and "closed under addition & scalar multiplication?

<u>Punchline</u>: There are many mathematical objects which admit these z operations with the same 10 projecties. We call them rector spaces

EXAMPLES: FF = 3 f: R -> R? [set of all functions of me reviable] leg sin (x), c> (x), ex, x" + x2+1, an all "elements" of FF) . functions can be added together to yet new functions . ______ scaled by a rual number.

Eq:
$$sen(x) + e^{x} + co(4x)$$

 $F_{2} sen x, 4e^{x}, \frac{1}{7}co(2x)$
Adding additional projecties to our functions will produce subspaces
 $F^{\circ} = \frac{1}{5} f: \mathbb{R} \longrightarrow \mathbb{R}$ continuous $f \notin F$
 $F' = \frac{1}{5} f: \mathbb{R} \longrightarrow \mathbb{R}$ differentiable $f \notin F^{\circ}$

Formal definition: A vector space (over
$$\mathbb{R}$$
) is a set V with z operations
addition $V \times V \longrightarrow V$ (elements of V are called
 $(\overrightarrow{v_1}, \overrightarrow{v_2}) \longmapsto \overrightarrow{V_1} + \overrightarrow{v_2}$
"retors")

• scalar multiplication:
$$\mathbb{R} \times \mathbb{V} \longrightarrow \mathbb{V}$$

 $(a, \overline{v}) \longmapsto a \cdot \overline{v}$

These 2 operations are required to satisfy the following 8 properties

Addition: (A1)
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
 for all $\vec{u}, \vec{v} = \vec{v} + \vec{u}$
(A2) $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$ for all $\vec{u}, \vec{v}, \vec{w} = \vec{v}$
(A3) There is an element $\vec{O} = \vec{v}$ (Neutral Element)
satisfying $\vec{O} + \vec{v} = \vec{v} + \vec{O} = \vec{v}$ for all $\vec{v} = \vec{v}$
(A4) Given $\vec{v} = \vec{v} + \vec{v} = \vec{v}$
satisfying $\vec{v} + \vec{v} - \vec{v}^2 = \vec{O}$

Scalar Hultiplication: (H1)
$$a(b\vec{v}) = (ab)\vec{v}$$
 for every 9, b u lk, \vec{v} uV
(H2) $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$ for every $a\vec{u}$ lk, \vec{v} uV
(H3) $(a+b)\vec{v} = a\vec{u} + b\vec{v}$ - $a_{j}\vec{v}$ uN
(H4) $1.\vec{v} = \vec{v}$ for every \vec{v} uV

Old Examples: . IR is a rector space with usual + & scalar mult [§ 3.2] . Mat_{mxy} (IR) = set of all mxy matrices is a rector space by \$1.6

· Null Space, Ronge & Row Space of a matrix are rector spaces.

$$\frac{\text{New Examples:}}{\text{C}([0,1])} = \text{all cont functions } \mathbb{R} \to \mathbb{R} \qquad (\overline{0} = \text{geo function})$$

$$\frac{\text{C}([0,1])}{\text{C}([0,1])} = \text{all continuous functions defined on the interval Co,1]} (0 \le x \le 1)$$

$$= \frac{1}{2} \text{ a}_0 + 9_1 \times + 9_2 \times^2 + \dots + 9_m \times^m : a_0, \dots, a_n \text{ in } \mathbb{R} \text{ and iterang}}$$

$$\frac{\text{Nedition}}{1 = \frac{1}{2} a_0 + 9_1 \times + 9_2 \times^2 + \dots + 9_m \times^m : a_0, \dots, a_n \text{ in } \mathbb{R} \text{ and iterang}}$$

$$\frac{\text{Nedition}}{1 = \frac{1}{2} a_0 + 9_1 \times + \dots + 9_m \times^m} \qquad ("\text{term - by - term"})$$

$$\frac{\text{Nedition}}{1 = \frac{1}{2} a_0 + 9_1 \times + \dots + 9_m \times^m} \qquad ("\text{term - by - term"})$$

$$\frac{\text{Nedition}}{1 = \frac{1}{2} a_0 + 9_1 \times + \dots + 9_m \times^m} \qquad ("\text{term - by - term"})$$

$$\frac{\text{Nedition}}{1 = \frac{1}{2} a_0 + 9_1 \times + \dots + 9_m \times^m} \qquad ("\text{term - by - term"})$$

$$\frac{\text{Scalan Hult: plication:}}{1 = 0 + 0 \times + \dots + 0 \times^m} \qquad (a_0 + b_0) + (a_1 + b_0) \times^m$$

$$\frac{\text{Scalan Hult: plication:}}{1 = 0 + 0 \times + \dots + 0 \times^m} = (a_0) + (a_0) \times + \dots + (a_0) \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 = 0 + 0 \times + \dots + 0 \times^m} = (a_0) + (a_0) \times + \dots + (a_0) \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 = 0 + 0 \times + \dots + 0 \times^m} = (a_0) + (a_0) \times + \dots + (a_0) \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 = 0 + 0 \times + \dots + 0 \times^m} = (a_0) + (a_0) \times + \dots + (a_0) \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 \times 0 \text{ polynomial}} = 0 + 0 \times + \dots + 0 \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 \times 0 \text{ polynomial}} = 0 + 0 \times + \dots + 0 \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 \times 0 \text{ polynomial}} = 0 + 0 \times + \dots + 0 \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 \times 0 \text{ polynomial}} = 0 + 0 \times + \dots + 0 \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 \times 0 \text{ polynomial}} = 0 + 0 \times + \dots + 0 \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 \times 0 \text{ polynomial}} = 0 + 0 \times + \dots + 0 \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 \times 0 \text{ polynomial}} = 0 + 0 \times + \dots + 0 \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 \times 0 \text{ polynomial}} = 0 + 0 \times + \dots + 0 \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 \times 0 \text{ polynomial}} = 0 + 0 \times + \dots + 0 \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 \times 0 \text{ polynomial}} = 0 + 0 \times + \dots + 0 \times^m}$$

$$\frac{\text{Scalar Hult: plication:}}{1 \times 0 \text{ polynomial}} = 0 + 0 \times + \dots + 0 \times^m}$$

$$\frac{\text{Sc$$

New Examples:
$$V=TF = functions of one variable
 $Sn = polynomials of degree at most n is a subspace of TF
 $S = 3 F(x) : F'' = -FF$ is a subspace of TF.$$$