$$\frac{\text{Letture XXIV: $5:1-5:2$ Alistand Vectri spaces}}{5:3$ Subspaces}$$
Recall. A set V with + a scalar multiplication is a vectri space if it satisfies 8 projectices (including natural elements of , etc.)
Elements of V an called vectors a elements of R an called scalars
Examples: Mat_{maxin} = 3 maxin matrices a $g_{n=3}$ polynomials of ug sub-
 $= 3 a_{0} a_{0} (x + \cdots + a_{n} x^{n}) \cdot a_{0} (ug)$
A subset W of V is a subspace if $\vec{D} = \sqrt{V} \cdot \vec{u}$ is $(V = \sqrt{V} \cdot \vec{u} + \vec{u})$
A subset W of V is a subspace if $\vec{D} = \sqrt{V} \cdot \vec{u}$ is $(V = \sqrt{V} \cdot \vec{u} + \vec{u})$
(Reason : Add (- \vec{u}) to both sides of the equation \vec{u} use $\vec{O} + \vec{v} = \vec{v}$
(Reason : Add (- \vec{u}) to both sides of the equation \vec{u} use $\vec{O} + \vec{v} = \vec{v}$
(Reason : $\vec{O} = \vec{O} + \vec{O} = \vec{O}^{\prime}$)
 $\vec{O}^{\prime} + \vec{v} = \vec{v}$ for all \vec{v} , then $\vec{O} = \vec{O}^{\prime}$
(Reason $\vec{O} = \vec{O} + \vec{O}^{\prime} = \vec{O}^{\prime}$)
 $\vec{O}^{\prime} + \vec{v} = \vec{v}$ for all \vec{v} , then $\vec{U} = \vec{u}$
(Reason $\vec{O} = \vec{O} + \vec{O}^{\prime} = \vec{O}^{\prime}$)
 $\vec{O}^{\prime} + \vec{v} = \vec{v}$ for all \vec{v} , then $\vec{U} = \vec{u}$
(Reason $\vec{U} = \vec{U} + \vec{O} = \vec{U} + (\vec{v} + \vec{u}) = (\vec{U} + \vec{v}) + \vec{u} = \vec{O} + \vec{U} = \vec{v}$)
(Reason $\vec{u} = \vec{u} + \vec{O} = \vec{u} + (\vec{v} + \vec{u}) = (\vec{u} + \vec{v}) + \vec{u} = \vec{O} + \vec{u} = \vec{v}$)
(Reason $\vec{U} = \vec{O} + \vec{O} = \vec{U} + (\vec{v} + \vec{u}) = (\vec{U} + \vec{v}) + \vec{u} = \vec{O} + \vec{U} = \vec{v}$)
(Reason $\vec{U} = \vec{U} + \vec{O} = \vec{U} + (\vec{v} + \vec{u}) = (\vec{U} + \vec{v}) + \vec{u} = \vec{O} + \vec{U} = \vec{v}$)

(5)
$$a \cdot \overline{O} = \overline{O}$$
 for every ain \overline{R}
(Resonn: $a \cdot \overline{O} = a \cdot (\overline{O} + \overline{O}) = a \cdot \overline{O} + a \cdot \overline{O}$, so $\overline{O} + a \cdot \overline{O} = a \cdot \overline{O}$
so by concellation $\overline{O} = a \cdot \overline{O}$
(6) " $-\overline{V}$ " = $(-1) \cdot \overline{V}$ for every $\overline{V} = V$
(Reson: $\overline{V} + (-1) \cdot \overline{V} = (-\overline{V} + (-1) \cdot \overline{V} = (1-1) \cdot \overline{V} = 0 \cdot \overline{V} = \overline{O}$
by (6) so $(-1) \cdot \overline{V}$ satisfies the defining projectly of Additive
Tweene. By the uniqueness, we get $(-1) \cdot \overline{V} = "-\overline{V}$?
(8) So $(-1) \cdot \overline{V}$ satisfies the defining projectly of Additive
Tweene. By the uniqueness, we get $(-1) \cdot \overline{V} = "-\overline{V}$?
(9)
(92. Examples of vector spaces:
. Main examples of vector spaces:
. Main examples of vector spaces:
. Main examples of vector spaces :
. Materian = set of all mixer matrices
. The = set of all performinates of lower at most n
. $C[o,1] = set of all continuous functions of fined on [0,1] = 30 = xxsift
Note: . On is a subspace of T. Also In is a subspace of C(o,17)
. $C(o,1]$ is not a subspace of T.
Example. Fix $m = n > 2$ a Materian = all square use matrices
 $S = 3A$ in Materian : $A^T = A$ is symmetric (mixer) matrices
 $S = 3A$ in Materian : $A^T = A$ is symmetric (mixer) matrices
 $\frac{Main}{S} : S$ is a subspace of Network
(Si) $O = \begin{bmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{bmatrix}$ is in S
(see) A , B in S, then $(A+B)^T = A^T + B^T = A+B$ so in S
(see) A in S cin \overline{R} , then $(CA)^T = CA^T = CA$ so in S$

Intuitive dea: "Salespace on defined by linear homogeneous ages"
Examples
$$0 \times = 3 \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
: $ab = 0 \}$ is not a subspaced that
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} a \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ both in \times but $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is not
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} a \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ both in \times but $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is not
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} a \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ both in \times but $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is not
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ both in \times but $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Zero polynomial with Y .
Fix: $W = 3 P(x) & W S_3$ with $P''(x) = 0 \}$ is a subspace of S_3
Reason: $0 = 0 + (x_1) = 0$
 $\cdot (F(x) + g(x_2))'' = F'(x_3)$
 $\frac{g_{24}}{1} + \frac{1}{1} + \frac{1$

(55)
$$\vec{u} = a_1 \vec{v}_1 + \dots + a_p \vec{v}_p \quad m > c\vec{u} = (ca_1)\vec{v}_1 + \dots + (a_p)\vec{v}_p$$

in $Sp(S)$

Definition: Fix a subspace W of V & S=3\vec{v}_1, ..., \vec{v}_p is biaite
ect of pectro in W. IF $Sp(S) = W$, we say S is a spanning
with for W

Examples: (1) $S_3 = V = W = 3 a_0 1 + a_1 \times + a_2 \times^2 i_1^2$
 $= Sp((1, \times, \times^2))$
(2) $W = 3 p$ in S_3 : $p'(c_0) = o_1^2$ subspace of $S_3 = V$
 $p'(x_1) = a_0 + a_1 \times + a_2 \times^2$
 $p'(x_2) = a_1 + 2a_2 \times$ So $p''(c_0) = o$ become $a_2 = o$
 $p''(x_1) = 2a_2$
So $W = S_2 = Sp((1, \times))$
(3) $W_2 = 3 p$ in S_3 : $p'(c_0) = o_1^2$ is a subspace of $S_3 = V$
condition become $a_1 + 2a_2 \cdot o = 0$, so $a_1 = o$
 $W_2 = 3 a_0 + a_2 \times^2 : a_0 a_2$ free $1 = Sp(1, \times^2)$
Set Linear Independence: Fix V a rector space
Definition a set $S = (V_1, \dots, V_p)$ of rectors in V we say
 $\cdot S$ is Linearly dependent if we can find scalars a_1, a_2, \dots, a_p
not all gene satis Figure:
(x) $a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_p \vec{v}_p = O$ (in V)
(We view this equation $a_0 = 0$ is dependence relation among $\vec{v}_1, \dots, \vec{v}_p$)

• S is linearly independent if (*) only has me solution:

$$g_1=a_2=\dots=g_p=0$$

 g_5 . Bases
 \underline{Def} : A set of xectors $B=3v_1,\dots,v_p$? of a netter space V
is a basis for V if B is a spanning set for V (Sp(B)=V)
 B is linearly indep
 $\underline{Examples}$: $D V = Bn$ has basis $B=31,x,x^2,\dots,x^n$?
• Spanning is clear
• L I: IF $b(x) = b_0 + b_1x + \dots + b_nx^n = 0$ geo polyn.
Then $b(x) = b_0 = b$ implies $b_0=b_1=b_2=\dots=b_n=0$
 $b'(x) = b_1 = 0$ implies $b_0=b_1=b_2=\dots=b_n=0$
 $b''(x) = b_0 = 0$
 b'