Lecture XXIV: $55.1-5.2$ Abstract Vector spaces ES. 3 Subspaces
Recall. Asst $V$ with +8 scalar multiplicatein is a rector space if it satisfies 8 properties (including neutral element) $\vec{\theta}$, etc)
Elements of $V$ are called rectors a elements of $\mathbb{R}$ ane called scalars
Examples: Mat $m \times n=3 \mathrm{mxn}$ matrices $\& P_{n}=3$ prlynmials of deg $\left.\leqslant n\right\}$

$$
=3 a_{0}+a_{1} x+\cdots+a_{n} x^{n}: a_{i} \text { fra\} ~ }
$$

- A subset $W$ of $V$ is a subspace if $\vec{D}$ of $V$ is in $W$ a $W$ is closed under t \& Scalar multi.
\$1. Useful Properties of Vector Spaces:
Fix $V$ a rector space
(1) Cancellation: If $\vec{u}+\vec{v}=\vec{u}+\vec{w}$ then $\vec{v}=\vec{w}$
(Reason: Add $(-\vec{u})$ To both sides of the equation \& use $\left.\begin{array}{l}\overrightarrow{0}+\overrightarrow{0} \\ \overrightarrow{0}+\vec{\omega}=\vec{\omega}\end{array}\right)$
(2) Neutral Element is unique: Meaning if there are two elements $\vec{Q}_{\&}$
$\vec{Q}^{\prime}$ satisfying $\vec{D}+\vec{r}=\vec{r}$
(Reason

$$
\begin{gathered}
\overrightarrow{\mathbb{O}}=\overrightarrow{\mathbb{O}}+\overrightarrow{\mathbb{D}}=\overrightarrow{\overline{0}}) \\
\overrightarrow{\mathbb{D}^{\prime} \text { nuptial }} \quad \overrightarrow{\mathbb{O}}_{\text {neutral }}
\end{gathered}
$$

(3) Additive Inverse is unique: Meaning: given $\vec{v}$ in $V$, if there ane 2 elements $\vec{u} \& \vec{w}$ with $\begin{aligned} & \vec{u}+\vec{r}=\overrightarrow{0} \\ & \vec{\omega}+\vec{v}=\overrightarrow{0}\end{aligned}$, then $\vec{u}=\vec{\omega}$
(Reason $\vec{u}=\vec{u}+\overrightarrow{\mathbb{D}}=\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{r})+\vec{w}=\overrightarrow{0}+\vec{w}=\vec{v})$
(4) $0 \cdot \vec{v}=\vec{D}$ for any $\vec{v} \mathrm{mV}$
(Reason: $\quad 0 \cdot \vec{v}=(0+0) \vec{v}=0 \cdot \vec{v}+0 \cdot \vec{v}$ so $\vec{D}+0 \cdot \vec{v}=0 \cdot \vec{v}+0 \cdot \vec{v}$ so by cancullatim we get $\vec{D}=0 \cdot \vec{v}$ )
(5) $a \cdot \overrightarrow{0}=\overrightarrow{0}$ is efren a in $\mathbb{R}$
(Reason: $a \cdot \overrightarrow{0}=a \cdot(\overrightarrow{0}+\overrightarrow{0})=a \cdot \overrightarrow{0}+a \cdot \overrightarrow{0}$, so $\overrightarrow{0}+a \cdot \overrightarrow{0}=a \cdot \vec{\theta}+a \cdot \vec{\theta}$ so by cancellation $\overrightarrow{D D}=a \cdot \vec{D}$
(6) $"-\vec{v} "=(-1) \cdot \vec{v}$ fr exec $\vec{v} m V$
(Reason: $\quad \vec{v}+(-1) \cdot \vec{v}=1 \cdot \vec{v}+(-1) \cdot \vec{v}=(1-1) \cdot \vec{v}=0 \cdot \vec{v}=\overrightarrow{\mathbb{C}}$
by (4) so $(-1) \cdot \vec{v}$ satisfies the defining property of Additive
Inverse. By the miqueness, we get $(-1) \cdot \vec{v}="-\vec{v}$ ")
32. Examples of Subspaces:

- Main examples of rector spaces:
- Mat $m \times n=$ set of all $m \times n$ matrices
- $\mathbb{F}=$ set of all functions of 1 variable
- $Q_{n}=$ set of all polynomials of degree at most $n$
$-C[0,1]=$ set of all continuous functions defined on $[0,1]=30 \leq x \leq 1\}$
Note: $P_{n}$ is a subspace of $T$. Also $P_{n}$ is a subspace of $C^{[0,1]}$
- $C[0,1]$ is not a subspace of $\mathbb{F}$.

Example Fix $m=n \geqslant 2$ \& $M_{a t_{n \times n}}=$ all square $n \times n$ matrices $S=\left\{A\right.$ in Mat $\left._{n \times n}: A^{\top}=A\right\} \quad$ symmiticic $(n \times n)$ matures
Claim: $S$ is a subspace of Mat ${ }_{u x u}$
(SI) $Q=\left[\begin{array}{ccc}0 & \cdots & -0 \\ \vdots & & \vdots \\ 0 & \ldots & 0\end{array}\right]$ is in $S$
(Si) $A, B$ in $S$, then $(A+B)^{\top}=A^{\top}+B^{\top}=A+B$ so in $S$
(S3) $A$ in $S$ in $\mathbb{R}$, then $(C A)^{\top}=c A^{\top}=c A$ so in $S$

Intuitive idea: "subspaces are defined by linear homogeneous ecus"
Examples (1) $X=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a b=0\right\}$ is not a subspace of Mat ${ }_{2 \times 2}$ $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \&\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ both in $X$ but $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ is not.
(2) $Y=\left\{P(x)\right.$ in $P_{3}$ with $\left.P^{\prime \prime}(0)=5\right\}$ is wt a subspace of $P_{3}$ Zeno prepnmial not mi $Y$.

Fix: $W=3 P(x)$ un $P_{3}$ with $\left.P^{\prime \prime}(0)=0\right\}$ is a subspace of $P_{3}$
Reason: - $D^{\prime \prime}(x)=0$

$$
\begin{aligned}
& \cdot(f(x)+g(x))^{\prime \prime}=f^{\prime \prime}(x)+g^{\prime \prime}(x) \\
& \cdot(c f(x))^{\prime \prime}=c f^{\prime \prime}(x)
\end{aligned}
$$

\$3. Spanning Sets:

$$
V=\text { fixed rector space }
$$

DeL: $\left.S=4 \overrightarrow{v_{1}}, \ldots, \overrightarrow{v p}\right\}$ a set af "rectus" in $V$

$$
\begin{aligned}
S_{p}(S) & =\text { span of } S=\text { set of all limes comb of } \vec{r}_{1}, \ldots, \vec{r}_{p} \\
& =\left\{a_{1} \vec{v}_{1}+\cdots+a_{p} \vec{v}_{p} \text { where } a_{1}, \ldots, a_{p} \text { is arbitrary }\right\}
\end{aligned}
$$

Poop: $S_{p}(S)$ is a subspace of $V$
Proof: Same reasons as for spans in $\mathbb{R}^{n}$.

$$
\text { (si) } \overrightarrow{\mathbb{D}}=\underbrace{\overrightarrow{\mathbb{D}}+\cdots+\overrightarrow{0}}_{\text {times }}=0 \cdot \vec{v}_{1}+\cdots+0 \cdot \vec{v}_{p} \text { in } \operatorname{Sp}(S)
$$

(sc) $\vec{u}=a_{1} \vec{v}_{1}+\cdots+a_{p} \vec{v}_{p}$ in in $S_{p}(S)$

$$
\frac{+\vec{\omega}=b_{1} \vec{v}_{1}+\cdots+b_{p} \vec{v}_{p}^{2}}{\vec{u}+\vec{\omega}=\left(a_{1}+b_{1}\right) \vec{v}_{1}+\cdots+\left(a_{p}+b_{p}\right) \vec{v}_{p} \quad \text { in } S_{p}(S) \quad \begin{array}{l}
\text { Hen we use } \\
\text { (nB), (A1) }
\end{array}}
$$

(S3) $\begin{array}{r}\vec{u}=a_{1} \vec{v}_{1}+\cdots+a_{p} \vec{v}_{p} \leadsto \vec{c} \leadsto \vec{u}=\left(c a_{1}\right) \vec{v}_{1}+\cdots+\left(c a_{p}\right) \vec{v}_{p} \\ \text { in } S_{p}(S) \\ \text { in } S_{p}(S)\end{array}$
Definition: Fix a subspace $W$ of $V$ \& $S=3 \vec{v}_{1}, \ldots, \vec{v}_{p}$ c a finite set of sectors in $W$. If $S p(S)=W$, we say $S$ is a spawning set for $W$

Excomples: (1)

$$
\begin{aligned}
B_{3}=V=W & =\left\{a_{0} 1+a_{1} x+a_{2} x^{2}\right\} \\
& =S_{p}\left(1, x, x^{2}\right)
\end{aligned}
$$

(2) $W=\left\{p\right.$ in $\left.P_{3}: p^{\prime \prime}(0)=0\right\}$ subspace of $P_{3}=V$

$$
\begin{aligned}
& p(x)=a_{0}+a_{1} x+a_{2} x^{2} \\
& p^{\prime}(x)=a_{1}+2 a_{2} x \\
& p^{\prime \prime}(x)=2 a_{2}
\end{aligned}
$$

so $p^{\prime \prime}(0)=0$ becomes $a_{2}=0$
so $W=3_{2}=S_{p}(1, x)$
(3) $\left.W_{2}=3 p \mathrm{~m} \beta_{3}: p^{\prime}(0)=0\right\}$ is a subspace of $\beta_{3}=V$ Condition becomes $a_{1}+2 a_{2} \cdot 0=0$, so $a_{1}=0$

$$
W_{2}=\left\{a_{0}+a_{2} x^{2}-a_{0}, a_{2} \text { free }\right\}=\operatorname{Sp}\left(1, x^{2}\right)
$$

§4. Linear Independence: Fix $V$ a rector space
Def: Given a set $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ of rectors in $V$ ur say

- $S$ is limarly dependent if we can find scalars $a_{1}, a_{2}, \ldots, a_{p}$ not all zero satisfying:
(*) $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{p} \vec{v}_{p}=\overrightarrow{0} \quad$ (in V)
(We view this equation as a "dependence relation among $\vec{r}_{1}, \ldots, \vec{r}_{p}$ )
- S is linearly independent if (*) only hos me solution:

$$
a_{1}=a_{2}=\cdots=a_{p}=0
$$

§5. Bases
Def: A set of rectors $\left.B=3 \vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ of a rector space $V$ is a basis for $V$ if. $B$ is a spanning set for $V\left(S_{p}(B)=V\right)$
\&. $B$ is linearly indep
Examples: (1) $V=P_{n} \quad$ has basis $\left.B=31, x, x^{2}, \cdots, x^{n}\right\}$

- Spanning is clear
- LI: If $b(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}=0$ zed poly.

Then $\quad b(0)=b_{0}=0$

$$
\begin{aligned}
b^{\prime}(0) & =b_{1}=0 \\
b^{\prime \prime}(0) & =2 b_{2}=0 \\
b^{\prime \prime \prime}(0) & =6 b_{3}=0 \\
\vdots & \text { implies } \\
b^{(n)}(0) & =n(n-1) \ldots-2-1 \quad b_{n}=0
\end{aligned}
$$

$$
\text { implies } b_{0}=b_{1}=b_{2}=\cdots=b_{n}=0
$$

(2) $\{\operatorname{sen}(x), \operatorname{cs}(x)\}$ is a himarly index set in $\mathbb{Z}$

Sole: Write $a \operatorname{sen} x+b \cos x=0$ (cast gen henctim)
Setting $x=0$ gives $a \cdot 0+b \cdot 1=0$ so $b=0$ setting $x=\frac{\pi}{2}\left(=90^{\circ}\right)$ gives $a \cdot 1+b .0=0$ so $a=0$.
1 I $\mathbb{F}=1$ functions of 1 variable $\}$ doesn't have a finite bases Ditto for $C_{[0,1] \text {. }}$
(3) Exercise: Find a basis for $W=\left\{A\right.$ in $\left.\Pi_{3 \times 3}: A^{\top}=A\right\}$.

Sorn: $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

$$
\begin{aligned}
& a_{12}=a_{21} \\
& a_{13}=a_{31} \\
& a_{23}=a_{32}
\end{aligned}
$$

Typical element on $W$ :

$$
\begin{aligned}
& A= {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]=} \\
&\left.\begin{array}{c}
a_{11}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+
\end{array}\right]+a_{12}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+ \\
& \text { the entries) } a_{13}\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]+a_{22}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+ \\
& a_{23}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]+a_{33}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& S=\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right\}
\end{aligned}
$$

Then $S p(S)=W$
Same calculation says $S$ is $l i$, so $S$ is a basis for

