Lecture XXV: §5.4 Limar Indypunduce, Bases
Recall Spanning sets, limar undeperderice, Bares:
Fix V a rector space \& a set of "rectors" $\left.S=3 \vec{v}_{1}, \ldots, \vec{v}_{p}\right\} \subset V$

- We define $S p(S)=\left\{a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{p} \vec{v}_{p}: a_{1}, a_{2}, \ldots, a_{p}\right.$ arbitiany $\}$

It is the subspace of V spanned by S (S spans $S_{p}(S)$)

- We say S is limply independent if the ally solution to the dependency relation:

$$
a_{1} \vec{v}_{1}+\cdots+a_{p} \vec{v}_{p}=\begin{gathered}
\overrightarrow{0} \\
\text { venal } \\
\text { El in } V
\end{gathered} \text { is } a_{1}=a_{2}=\cdots=a_{p}=0 .
$$

Examples:

Definition: Fix a subspace W of V \& $B=\left\langle\vec{w}_{1}, \ldots, \vec{w}_{k}\right.$ \& a subset of W
Them B is a basis for W if $(1) ~ W=S p(B)$ ("B spans W ")
(2) B is linearly independent

El Examples :
(1)

$$
\begin{aligned}
& \text { Mat }_{2 x_{3}}=\left\{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right], a_{11}, \ldots, a_{23} \text { hue }\right\} \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]=a_{11} \underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}_{=E_{11}}+a_{=E_{12}}^{\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]}+a_{13} \underbrace{\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]}_{=E_{13}}+q_{21} \underbrace{\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]}_{=E_{21}}} \\
& +a_{22} \underbrace{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]}_{=E_{22}}+a_{23} \underbrace{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]}_{=E_{23}}
\end{aligned}
$$

$E_{i j}=$ is a matures with $a 1$ in (i, j)-entry and 0 's everywhere else. (size is understood fum cutest.

- These 6 matrices span Mat 2×3
- They are li: A dependency relation looks like:

$$
a_{11} E_{11}+a_{12} E_{12}+a_{13} E_{13}+a_{21} E_{21}+a_{22} E_{22}+a_{23} E_{23}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The calculation above murites the (CHS) as a matux, we get t:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The equality of matrices fires equality of entries in each side, so

$$
a_{11}=a_{12}=a_{13}=a_{21}=a_{22}=a_{23}=0 .
$$

In general: Basis or Matmxu $=\left\{E_{11}, E_{12}, \ldots, E_{1 n}, E_{21}, \ldots . E_{\text {mn }}\right\}\binom{$ m. n nuts $)}{$ elm }
Obs: Then is how you find basis fr e subspaces of Mat man.
(2) Symmetric 3×3 matrices $=\operatorname{Sp}\left(E_{11}, E_{12}+E_{21}, E_{13}+E_{31}, E_{22}, E_{23}+E_{32}, E_{33}\right)$ cost time
Chuck: These 6 matrices are a basis for W
(3) Decide if $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 2 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}3 & 0 & 5 \\ 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]\right\}$ is $\mathrm{li} / \mathrm{ld}$.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=a\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]+b\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0
\end{array}\right]+c\left[\begin{array}{lll}
3 & 0 & 5 \\
0 & 4 & 0
\end{array}\right]+d\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
a+b+3 c & 0 & a+2 b+5 c+d \\
0 & a+b+4 c & 0
\end{array}\right]}
\end{aligned}
$$

m We get 3 equations

$$
\left\{\begin{array}{c}
a+b+3 c=0 \\
a+2 b+5 c+d=0 \\
a+b+4 c=0
\end{array}\right.
$$

3 eperatems \& 4 curkuouss ans solution is Nor
unique, so dod

$$
a, b, c d u
$$

\hookrightarrow relation!

$$
\begin{aligned}
& \text { Solution: }\left[\begin{array}{llll|l}
1 & 1 & 3 & 0 & 0 \\
1 & 2 & 5 & 1 & 0 \\
1 & 1 & 4 & 0 & 0
\end{array}\right] \xrightarrow[\substack{R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}}]{ }\left[\begin{array}{llll|l}
1 & 1 & 3 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] \xrightarrow[\substack{R_{2} \rightarrow R_{2}-2 R_{3} \\
R_{1} \rightarrow R_{1}-3 R_{3}}]{ }\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] \\
& \xrightarrow[R_{1} \rightarrow R_{1}-R_{2}]{l}\left[\begin{array}{cccc|c}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\uparrow & \uparrow & \uparrow & &
\end{array}\right] \\
& \begin{aligned}
a-d & =0 \\
b+d & =0 \\
c & =0
\end{aligned} \quad\left[\begin{array}{l}
a \\
b \\
d
\end{array}\right]=d\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Relater: $\left[\begin{array}{cc}A \\ 1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right]-\left[\begin{array}{cc}B \\ 1 & 0\end{array}\right]+\left[\begin{array}{ccc}D \\ 0 & 1 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
\} $A, B, C, D\}$ is not $l i$ but we can drop any of $A, B>D$
$\&$ set a li set spanning $S_{p}(A, B, C, D)=W$
\leftrightarrow no other elation ann A, B, C, D.
Conclusion $3 A, B, C\},\{A, C, D\} \&\{B, C, D\}$ are
bases for W . (This is the same algorithm we had fo building bases for subspaces of \mathbb{R}^{n} starting from a sparking sett)
(3) $P_{2}=\left\{a_{0} \cdot 1+a_{1} x+a_{2} x^{2}\right\}$ has basis $\left\{1, x, x^{2}\right\}$

- Spanning is char.
- LI? Use derivation + evaluation at $x=0$ repeatedly

$$
\begin{array}{rlll}
\dot{\phi}=a_{0}+a_{1} x+a_{2} x^{2} & \underset{x=0}{m} & 0=a_{1} \\
0=\Phi^{\prime} & =a_{1}+2 a_{2} x & \underset{x=0}{\longrightarrow} & 0=a_{1} \\
0=\mathbb{D}^{\prime \prime}= & 2 a_{2} & \underset{x=0}{\sim} & 0=2 a_{2} \text { \&o } a_{2}=0 .
\end{array}
$$

In general: B_{n} has bases $\left.31, x, x^{2}, \ldots, x^{n}\right\}(n+1)$ elements).
(4) Decide if $\left\{1,(x+1)^{2},(x-1)^{2}, x^{2}\right\}$ is li/ld

Write $\left(\mathbb{D}=a+b(x+1)^{2}+c(x-1)^{2}+d x^{2}\right.$
Option 1: Take successive derivatives and evolecate at $x=0$. You MUST chitck the answer

$$
\begin{aligned}
& \text { (1) }=a+b(x+1)^{2}+c(x-1)^{2}+d x^{2} \quad \underset{x=0}{\longrightarrow} 0=a+b+c \text {. } \\
& 0=0^{\prime}=2 b(x+1)+2 c(x-1)+2 d x \prod_{x=0} 0=2 b-2 c \\
& 0=\mathbb{0}^{\prime \prime}=2 b+2 c+2 d \quad \quad \sim \quad 0=2 b+2 c+2 d \\
& \text { Linear System } \\
& 3 \text { ecus } \\
& 4 \text { unkrouns } \\
& a+b+c=0 \quad \leadsto a+2 b=0 \quad a=-2 b \\
& 2 b-2 c=0 \\
& \text { m } b=c \\
& \leadsto 4 b+2 d=0 \\
& d=-2 b
\end{aligned}
$$

Solution: $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=b\left[\begin{array}{r}-2 \\ 1 \\ 1 \\ -2\end{array}\right] \Rightarrow \begin{gathered}\text { check if } 0=-2+(x+1)^{2}+(x-1)^{2}-2 x^{2} \\ \text { so L.D. }\end{gathered}$
Option 2: Evaluate at 4 convenient (random) values of x to get a limear system in a, b, c, d \& solve. You MUST check you answer.
At $x=0$

$$
0=a+b+c
$$

At $x=1$

$$
0=a+4 b+d
$$

At $x=-1$

$$
0=a+4 c+d
$$

Solution is $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=b\left[\begin{array}{c}-2 \\ 1 \\ 1 \\ -2\end{array}\right]$
At $x=2$

$$
0=a+9 b+c+4 d
$$

Optic 3: Expand \& write the (RHS) as a prlepumial a set coefficients to 0

$$
\begin{aligned}
\Phi & =a+b(x+1)^{2}+c(x-1)^{2}+d x^{2} \\
& =a+b\left(x^{2}+2 x+1\right)+c\left(x^{2}-2 x+1\right)+d x^{2} \\
& =(a+b+c)+(2 b-2 c) x+(b+c+d) x^{2}
\end{aligned}
$$

System: $\left\{\begin{array}{l}a+b+c=0 \\ 2 b-2 c=0 \\ b+c+d=0\end{array} \quad\right.$ Solution is $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=b\left[\begin{array}{c}-2 \\ 1 \\ 1 \\ -2\end{array}\right]$

Relation: $\mathbb{D}=-2 \cdot 1+(x+1)^{2}+(x-1)^{2}+(-2) x^{2}$ is the only relation ann the 4 prlypmials, so removing any of these 4 sises a limarly independent set.
$\$ 2$ Properties of Bases :
1 Not every rector space has a finite basis
For example, $V=T=$ functions of pine reliable
Last time, we saw that $\left\{1, x, x^{2}, x^{3}, \cdots, x^{n}\right\}$ is linearly independent
for any $n \geqslant 0$. So we can find arbithorily large sets of lin. indep. rectors in V. The mans V cannot possibly have a finite basis.

	\mathbb{R}^{n}	Matmxn	\mathbb{F}	P_{n}	$C_{[0,1]}$
Basis	$\left.\vec{e}_{1,}, \ldots, \vec{e}_{n}\right\}$ n elem	$\left.\begin{array}{c}\left\{E_{11}, \ldots, E_{m n}\right. \\ m \cdot n \text { elem }\end{array}\right\}$	wore finite	$\left.31, x, \ldots, x^{n}\right\}$ $(n+1)$ elem	

Fix V a sector space and $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ a basis for V
(1) If $\left.S=3 \vec{w}_{1}, \ldots, \vec{w}_{q}\right\}$ is in V and $q>p$, then S is limarly dependent.

Proof Write $\vec{w}_{1}, \ldots, \vec{w}_{q}$ using the basis B.

$$
\left\{\begin{array}{l}
\vec{w}_{1}=a_{11} \vec{v}_{1}+a_{21} \vec{v}_{2}+\cdots+a_{p 1} \vec{v}_{p} \\
\vec{w}_{2}=a_{12} \vec{v}_{1}+a_{22} \vec{v}_{2}+\cdots+a_{p 2} \vec{v}_{p} \\
\vdots \\
\overrightarrow{w_{q}}=a_{1 q} \vec{v}_{1}+a_{2 q} \vec{v}_{2}+\cdots+a_{p q} \vec{v}_{p}
\end{array} \quad A=\left(a_{i j}\right)\right.
$$

A linear expression $x, \vec{\omega}_{1}+\cdots+x_{g} \vec{\omega}_{q}=\overrightarrow{0}$ is the same as a humogeniores system.

$$
\underset{p \times q}{A} \underset{p \times 1}{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{q}
\end{array}\right]}=\underset{p \times 1}{\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]}
$$

\# equations $=p$
\# unknowns $=q$

$$
q>p
$$

Hence, nontrivial solectives exist a S is len dep.
(2) If $\tilde{B}=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{f}\right\}$ is another basis for V, then $q=p$.

Proof Sanecas for subspaces of \mathbb{R}^{n}. If $q>p$ then \tilde{B} is lem.dep by (1), but this cannot be the case because \tilde{B} is a basis

If $p>q$, then using (1) if the basis \tilde{B} says B is linearly dip, which again san't happen. Conclusion is $p=q$.
Consequence: $\operatorname{dim}(V)=$ dimension of $V=$ size of any basis for V.
This is a well-defined non-regative integer.
(3) We have cordinates of rector an V relative to bases (Next time!)

