Lecture XXVI: 5 s.4 Cordinates ulatere to Bases ह5.7 Linear Transfromatims
Last time: V rector space, $B=\left\langle\vec{v}_{1}, \ldots, \vec{v}_{p} \varepsilon\right.$ is a basis for V if
(1) $V=S_{p}(B)=\left\{a_{1} \vec{v}_{1}+\ldots+a_{p} \vec{v}_{p}: a_{1}, \ldots, a_{p}\right.$ a b bitaraly $\}$ (B spans V)
${ }^{2}$ (2) B is l_{i} (only solution to $\vec{\theta}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{p} \vec{v}_{p}$ in $\left(a_{1}, \ldots, a_{p}\right)$ is $a_{1}=a_{2}=\cdots=a_{p}=0$

$E_{(j:=} m \times n$ matrix with 1 in (i, j) entry \& $0^{\prime} s$ elsewhere.
Obs: $\{O\}$ is a rector space with No basis. $(\operatorname{dim}(30\})=0)$
Alprithm: S spanning sit $\longrightarrow B$ basis
How? Remove, dement at a time puns using elpendency relations in S until what remains is $l i$. (this is the output B)
\& 1. Proputies of bases:
Fix V a rector space and $B=\left\{\vec{v}_{1}, \ldots, \vec{r}_{p}\right\}$ a basis for V
(1) If $\left.S=3 \vec{w}_{1}, \ldots, \vec{w}_{q}\right\}$ is in V and $q>p$, then S is leary dependent.

Proof Wite $\vec{w}_{1}, \ldots, \vec{w}_{q}$ using the basis B.

$$
\left\{\begin{array}{l}
\vec{w}_{1}=a_{11} \vec{v}_{1}+a_{21} \vec{v}_{2}+\cdots+a_{p 1} \vec{v}_{p} \\
\overrightarrow{w_{2}}=a_{12} \vec{r}_{1}+a_{22} \overrightarrow{v_{2}}+\cdots+a_{p 2} \overrightarrow{v_{p}} \\
\vdots \\
\overrightarrow{\vec{w}_{q}}=a_{1 q} \vec{v}_{1}+a_{2 q} \overrightarrow{v_{2}}+\cdots+a_{p q} \overrightarrow{v_{p}}
\end{array} \quad A=\left(a_{i i j}\right)\right.
$$

A linear expression $x, \vec{\omega}_{1}+\cdots+x_{q} \vec{\omega}_{q}=\vec{\oplus}$ is the same as a homogenies system.

$$
\begin{gathered}
A \\
p \times q
\end{gathered}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{q} \\
f \times 1
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
\vdots
\end{array}\right] \quad \begin{gathered}
\text { \# equations }=p \\
\text { p unknown }=q
\end{gathered} \quad q>p
$$

$p \times 1$ Hence, wortrivial solutimes exist \& S is len dep.
(2) If $\tilde{B}=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{f}\right\}$ is another basis for V, then $q=p$.

Proof Sanies for subspaces of \mathbb{R}^{n}. If $q>p$ then \tilde{B} is lem.dep by (1), but this cannot be the case because \tilde{B} is a basis

If $p>q$, then using (1) if the basis \tilde{B} says B is linearly dip, which again sent happen. Conclusion is $p=9$.
Consequence: $\operatorname{dim}(V)=$ dimension of $V=$ size of any basis for V. This is a well-defined nonnegative integer.
(3) For even \vec{v} in V, then are uniquely determined scalars a_{1}, \ldots, a_{p} so that

$$
\vec{v}=a_{1} \vec{v}_{1}+a_{c_{2}} \vec{v}_{2}+\cdots+a_{p} \vec{v}_{p}
$$

Write $[\vec{v}]_{B}=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{p}\end{array}\right]$ Hector in $\mathbb{R}^{P}=\begin{gathered}\text { ordinates of } \vec{v} \text { relate } \\ \text { to the basis } B .\end{gathered}$
Poof: Since $S_{p}(B)=V$, the $a_{1}, a_{2} \ldots, a_{p}$ must exist
Uniqueness follows hum $l i$ of $B: z$ different solutions will give a dependency relation arming $\vec{v}_{,} \ldots, \vec{v}_{p}$.

Examples: (1) $V=\left\{\left[\begin{array}{ll}a & b \\ c d\end{array}\right]: a+d=0\right\}$

$$
\begin{aligned}
& =\left\{\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right] \text { a, } b, c \text { hue }\right\}=\operatorname{Sp}\left(\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) \\
{\left[\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right]\right]_{B} } & =\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { rector isis. } B \mathbb{R}^{3}
\end{aligned}
$$

We often view this operation of writing corrdinates relative to a ba is as a "linear transformation"

$$
\underset{v}{V} \longmapsto \mathbb{R}^{P} \quad P=\operatorname{dim} V
$$

Note for $\left.B_{1}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right\}$, then $\left[\left[\begin{array}{ll}a & b \\ c & -a\end{array}\right]\right]_{B_{1}}=\left[\begin{array}{l}b \\ c \\ a\end{array}\right]$ (order of rectors in the basis matters when computing corrdinates!)
(2) Let $\left.V=M a t_{2 \times 2} \& B=3 A_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], A_{2}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right], A_{3}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], A_{4}=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]\right\}$ Verify that B is a basis $\operatorname{lor} V$ a wite the coordinates of $\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ relative to B
Solution: A typical element of V is $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a E_{11}+b E_{12}+c E_{21}+d E_{22}$ We want τ_{0} rewrite it in terms of $A_{1}, A_{2}, A_{3}, A_{4}$.
Optim 1: Write the equation in $x, y, z \& w$ \& solve it:

$$
\text { (*) } \quad \begin{aligned}
{\left[\begin{array}{l}
a b \\
c d
\end{array}\right] } & =x\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+y\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]+z\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+w\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
x+y & w \\
y & z+\omega
\end{array}\right]
\end{aligned}
$$

We get a linear equations by equating entries

$$
\left\{\begin{aligned}
x+y & =a \quad m x+c=a, \text { so } x=a-c \\
w & =b \\
y & =c \\
z+w & =d \quad m z z+b=d, \text { so } z=d-b
\end{aligned}\right.
$$

We get a unique solution in (*) no matter what a, b, c, d are, so B is linearly indep (uniqueness part) \& spans (because solutions exist). Conclude: B is a basis.

$$
\begin{aligned}
& {\left[\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right]_{B}=\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
a-c \\
c \\
d-b \\
b
\end{array}\right] \quad \text { In particular, } f>\quad a=2=d,} \\
& \left.\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\right]_{B}=\left[\begin{array}{c}
2-(-1) \\
2-(-1) \\
-1
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
3 \\
-1
\end{array}\right] \ln \mathbb{R}^{4}
\end{aligned}
$$

Option 2: Show $E_{11}, E_{12}, E_{13}, E_{14}$ in $S_{p}(B)$ using (*)

$$
E_{11}=A_{1}, \quad E_{22}=A_{3}
$$

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
x+y & w \\
y & z+\omega
\end{array}\right] \quad w=1, y=0, x=0, z=-1} \\
E_{12}=-A_{3}+A_{y} \\
{\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
x+y & w \\
y & z+\omega
\end{array}\right]} & w=0 \quad y=1 \quad x=-1, z=0 \\
E_{21}=-A_{1}+A_{2}
\end{array}
$$

Solutions are unique, so B is l_{i}

- To find the coordinates we write $E_{i j}$ using Λ_{1}, though A_{4}

$$
\begin{aligned}
{\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] } & =2 E_{11}-E_{12}-E_{21}+2 E_{13} \\
& =2 A_{1}-\left(-A_{3}+A_{4}\right)-\left(-A_{1}+A_{2}\right)+2 A_{3} \\
& =(2+1) A_{1}+(-1) A_{2}+(2+1) A_{3}-A_{4}
\end{aligned}
$$

these 4 numbers give the coordinates relative to B

$$
\left[\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\right]_{B}=\left[\begin{array}{r}
3 \\
-1 \\
3 \\
-1
\end{array}\right]
$$

Next time: Give V with bases $\left.B=3 \vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ we can check $l i$, spanning of $S=\left\{\vec{w}_{1}, \ldots, \vec{w}_{k}\right\}$ by working $m \mathbb{R}^{P}$.
(1) S is l. index on V if, and only if, $\left\{\left[\overrightarrow{w_{1}}\right]_{B}, \ldots,\left[\vec{w}_{k}\right]_{B}\right\}$ is $l_{i} m \mathbb{R}^{P}$.
(2) S spans V if, and sonly if, $\left\{\left[\vec{w}_{1}\right]_{B}, \ldots,\left[\vec{w}_{k}\right]_{B}\right\}$ spans \mathbb{R}^{P}.

Consequence: $F_{i x} \mathbb{V} \neq\{\overrightarrow{0}\}$ a rector space with $\operatorname{dim} \mathbb{V}=P$. Then:
(1) Any set of $p+1$ r more vectors in $V 1 s$ lin. dep.
(2) $P-1$ \qquad cannot span \mathbb{V}
(3) \qquad i P lim.indep rectos in V is a basis for V.
(4) \qquad i rectors that spans V is a basis for V.

Back to our example: T take $\left.V=\operatorname{Mat}_{2 \times 2} B_{1}=3 E_{11}, E_{12}, E_{21}, E_{22}\right\}$

$$
\begin{aligned}
& {\left[A_{1}\right]_{B_{1}}=\left[\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right]_{B_{1}}=\left[E_{11}\right]_{B_{1}}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[A_{2}\right]_{B_{1}}=\left[\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\right]_{B_{2}}=\left[E_{11}+E_{21}\right]_{B_{2}}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]} \\
& {\left[A_{3}\right]_{B_{1}}=\left[\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right]_{B_{2}}=\left[E_{22}\right]_{B_{2}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]} \\
& {\left[A_{4}\right]_{B_{1}}=\left[\left[\begin{array}{lll}
0 & 1 \\
0 & 1
\end{array}\right]\right]_{B_{2}}=\left[E_{12}+E_{22}\right]_{B_{2}}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

Then $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ is a basis for Mat 2×2 because $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$ is a basis for \mathbb{R}^{4} (it's easy to check linear independence \& the size 4 agrees with $\operatorname{dim}\left(\mathbb{R}^{4}\right)$)
§2. Lima Transformatime:
The construction extend that of a linear transf $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$
Definition: Given two rector spaces $V \& W$ and a function

$$
T: V \longrightarrow W \quad \vec{v} \longmapsto T(\vec{v})(\text { sects; m } W)
$$

we say T is a liner transformation if

(2) $T\left(\underset{b_{m} V}{(\vec{v})}=c \cdot{ }_{b_{m} W}^{\cdot}(\vec{r})\right.$ ifs any \vec{v} in V \& c any scalar.

In short: T respects addition s scalar multiplication, ie the oferatims defining Remarle $T\left(\vec{\Phi}_{v}\right)=\overrightarrow{\mathbb{D}}_{\omega}$ if T is linear rector spaces
(Proof: take $c=0$ in (2) \& use $0 \cdot \vec{v}=\vec{\Phi}_{v}, 0 \cdot T(\vec{r})=\vec{\Phi}_{w}$.
Examples: (1) $T: \frac{1}{d x}: P_{3} \longrightarrow P_{2}$ is a linear transformation
(1) $(f+g)_{(x)}^{\prime}=f_{(x)}^{\prime}+\delta_{(x)}^{\prime}$
(2) $(c f(x))^{\prime}=c f^{\prime}(x)$

Explicitly $T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{1}+2 a_{2} x+3 a_{3} x^{2}$ $m 3_{3} \quad \ln 3_{2} V$
$\begin{gathered}\text { Note: At the lesel of coordinates } \\ \text { Lwith respect to standord bost } \\ \left.\text { (s } \beta_{3} \& P_{2}\right)\end{gathered}:\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \longrightarrow\left[\begin{array}{l}a_{1} \\ 2 a_{2} \\ 3 a_{3}\end{array}\right] \begin{aligned} & \text { is a leinas } \\ & \text { transf } \\ & \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}\end{aligned}$
(2) $V=W=\mathcal{P}_{3}$ \& $T: P_{3} \longrightarrow \mathcal{B}_{3}$ fisen by $T(f)_{(x)}=f(x+1)$
T is a linear Tansformatin
(1) $T(f+g)_{(x)}=(f+g)_{(x+1)}=f(x+1)+\rho(x+1)=T(f)_{(x)}+T(f)_{(x)}$
(2) $T(c f)_{(x)}=(c f)_{(x+1)}=c f(x+1)=c T(f)(x)$.

Explicitly: $T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{0}+a_{1}(x+1)+a_{2}(x+1)^{2}+a_{3}(x+1)^{3}$

$$
\begin{aligned}
& =a_{0}+a_{1}(x+1)+a_{2}\left(x^{2}+2 x+1\right)+a_{3}\left(x^{3}+3 x^{2}+3 x+1\right) \\
& =\left(a_{0}+a_{1}+a_{2}+a_{3}\right)+\left(a_{1}+2 a_{2}+3 a_{3}\right) x+\left(a_{2}+3 a_{3}\right) x^{2}+a_{3} x^{3}
\end{aligned}
$$

Note: At the lesel of corrdinates $:\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \xrightarrow{\text { Lnith respect to standard basis }}$ ps 33)
This is a livias Tuansf $\mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$

