Lecture XXVII: \&5.7 Limear Trausformations
§.1. Limar Transformatims:
The constreuction extend that of a liniar tansf $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$
Definition: Given tuo rectr spaces $V \& W$ and a functine

$$
T: V \longrightarrow W \quad \vec{v} \longmapsto T(\vec{v})(\text { rectirim } W)
$$

we say T is a limear transformation if

(2) $T\left(\underset{b_{m} V}{c \cdot \vec{v})}=c \cdot{ }_{b_{i n} W}^{T}(\vec{v})\right.$ is any \vec{v} in V \& c any scalar.

In short: T respects addition s scalar multiplication, ie the oferatims defining Remarle $T\left(\overrightarrow{\mathbb{D}}_{v}\right)=\overrightarrow{\mathbb{D}}_{\omega}$ if T is linear rectserspaces
(Pwoof: take $c=0$ in (2) \& use $0 \cdot \vec{v}=\vec{\Phi}_{v}, 0 \cdot T(\vec{v})=\overrightarrow{\mathbb{D}}_{\omega}$.
Examples: (1) $T: \frac{1}{d x}: P_{3} \longrightarrow P_{2}$ is a linear transformation
(1) $(f+g)_{(x)}^{\prime}=f_{(x)}^{\prime}+\delta_{(x)}^{\prime}$
(z) $(c f(x))^{\prime}=c f^{\prime}(x)$

Explicitly $T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{1}+2 a_{2} x+3 a_{3} x^{2}$ $m 3_{3}$
Note: At the lesel of corrdinates :
iwith rapect to standord basp $\mathrm{s}_{1} \mathrm{~S}_{3} \& \mathrm{P}_{2}$)

$$
\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \longrightarrow\left[\begin{array}{l}
m 3_{2} k \\
a_{1} \\
2 a_{2} \\
3 a_{3}
\end{array}\right] \begin{aligned}
& \text { is a leina } \\
& \text { transf } \\
& \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}
\end{aligned}
$$

(2) $V=W=\beta_{3}$ \& $T: P_{3} \longrightarrow \mathcal{P}_{3}$ fisen by $T(f)_{(x)}=f(x+1)$
T is a linear thansformatim
(1) $T(f+g)_{(x)}=(f+g)(x+1)=f(x+1)+\rho(x+1)=T(f)_{(x)}+T(f)_{(x)}$
(2) $\quad T(c f)_{(x)}=(c f)_{(x+1)}=c f^{(x+1)}=c T(f)(x)$.

Explicitly: $T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{0}+a_{1}(x+1)+a_{2}(x+1)^{2}+a_{3}(x+1)^{3}$

$$
\begin{aligned}
& =a_{0}+a_{1}(x+1)+a_{2}\left(x^{2}+2 x+1\right)+a_{3}\left(x^{3}+3 x^{2}+3 x+1\right) \\
& =\left(a_{0}+a_{1}+a_{2}+a_{3}\right)+\left(a_{1}+2 a_{2}+3 a_{3}\right) x+\left(a_{2}+3 a_{3}\right) x^{2}+a_{3} x^{3}
\end{aligned}
$$

Note: At the lerel of corrdinates : $\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \longrightarrow\left[\begin{array}{c}a_{0}+a_{1}+a_{2}+a_{3} \\ a_{1}+2 a_{2}+3 a_{3} \\ a_{2}+3 a_{3} \\ a_{3}\end{array}\right]$
This is a linias Tuansf $\mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$
(3) $T: 3_{3} \longrightarrow \mathrm{~B}_{4}$
is limeer.

$$
\begin{aligned}
& =a_{0} t+a_{1} \frac{t^{2}}{2}+a_{2} \frac{t^{3}}{3}+\left.a_{3} \frac{t_{4}}{4}\right|_{0} ^{x} \\
& =a_{0} x+\frac{a_{1}}{2} t^{2}+\frac{a_{2}}{3} t^{3}+\frac{a_{3}}{4} t^{4}
\end{aligned}
$$

In corrdinates

$$
\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \longmapsto\left[\begin{array}{l}
0 \\
a_{0} \\
a_{1} / 2 \\
a_{2 / 3} \\
a_{3 / 4}
\end{array}\right]
$$

is a lemon transf

$$
\mathbb{R}^{4} \longrightarrow \mathbb{R}^{5}
$$

(4) $V=C[0,1]$ contimuses functim on $0 \leq x \leq 1$
$T: V \longrightarrow \mathbb{R} \quad T(F)=\int_{0}^{1} f(x) d x \quad$ (= ara cundertm grafh of f)
T is a linear transformatien by projecties of istegration.
(5) $T \cdot \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \quad T(\vec{x})=A \vec{x} \quad$ is a fixed $m \times n$ matcix A is a limar transformation.
§2. Nullspace \& Rauge: $T: V \longrightarrow W$ liener Tiansf, between 2rector spales.
Def: The nullspace $\mathcal{N}(T)$ of T is the subspace of V defined by

$$
W(T)=\left\{\vec{v} \text { en } V: T(\vec{v})=\vec{\Phi}_{w}\right\}
$$

(It's a subspace becouse $T\left(\vec{Q}_{v}\right)=\overrightarrow{\mathbb{Q}}_{w}, \vec{\Phi}_{w}+\vec{Q}_{w}=\vec{\Phi}_{w}$ \& c. $\left.\cdot \vec{\Phi}_{w}=\overrightarrow{\mathbb{Q}}_{w}\right)$
(s)
(s2)
(53)

Det: The range $P(T)$ is the sutspace of W depred by $R(T)=3 \vec{\omega} m W: \vec{\omega}=T(\vec{v})$ is sime $\vec{v} m V\}$
Def: nullity $(T)=\operatorname{dem}(\omega(T)), \quad \operatorname{rark}(T)=\operatorname{dim}(R(T))$
Examples: (1) ${ }^{\top}$:

$$
\begin{aligned}
& M_{2 \times 3} \longrightarrow P_{5} \\
& {\left[\begin{array}{ll}
a & b \\
d & e
\end{array}\right] \longrightarrow a+b x+c x^{2}+d x^{3}+c x^{4}+f x^{5}}
\end{aligned}
$$

. Tis limar

- $\mathcal{N}(T)=\left\{\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\right\}$ because there is mly 1 way to wite the gen plymanial $m 3_{5}$, namely as $0+0 \cdot x+0 x^{2}+0 x^{3}+0 x^{4}+0 x^{5}$

$$
\cdot B(T)=P_{5}
$$

(2) $T: M_{2 \times 3} \longrightarrow P_{2}$

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \longrightarrow(a+b)+(c+d) x+(e+f) x^{2}
$$

- Tis limar

$$
\text { . } W(T)=? \quad(a+b)+(c+d) x+(e+b) x^{2}=\varnothing
$$

gires 3 equatims in 6 veriables:

$$
\left\{\begin{array}{lll}
a+b=0 & {\left[\begin{array}{llllll}
1 & b & c & d & e & f
\end{array}\right]} \\
c+d=0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$a, c, e \operatorname{dup} ; b, d, f$ imdip
So $\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]=\left[\begin{array}{ccc}-b & b & -d \\ d & -f & f\end{array}\right]=b\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]+d\left[\begin{array}{ccc}0 & 0 & -1 \\ 1 & 0 & 0\end{array}\right]+f\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 1\end{array}\right]$ $N(T)=S_{p}\left(\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & -1 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 1\end{array}\right]\right) m s$ uellity $(T)=3$
L $i=1]$

- $R(T)=$? Note that $a_{0}+a_{1} x+a_{2} x^{2}=T\left(\left[\begin{array}{ccc}a_{0} & 0 & a_{1} \\ 0 & a_{2} & 0\end{array}\right]\right)$ so $B(T)=Q_{2}$. mis $\operatorname{rank}(T)=3$

Note: $\operatorname{Rank}(T)+$ nullity $(T)=6=\operatorname{dem}$ Mat $_{2 \times 3}$.
This will be the ramk-nullity theorem for abstract rector spaces \& lima transf $T: V \rightarrow W$ where dem V is finite.
§3 Key example: Taking corrdinatis ulatire to a basis:
Fix V a vector space of dimension p a basis $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$
Let $T: V \longrightarrow \mathbb{R}^{p}$

$$
\vec{v} \longmapsto[\vec{v}]_{B}=\text { cords of } \vec{v} \text { relates to } B
$$

(If $\vec{v}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{p} \vec{v}_{p}$, then $[\vec{v}]_{B}=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{p}\end{array}\right]$
Prop: T is a limen transformation
$\begin{aligned} \text { Proof }(1) \vec{v} & =a_{1} \vec{v}_{1}+\cdots+a_{p} \vec{v}_{p} \\ +\vec{w} & =b_{1} \vec{v}_{1}+\ldots+b_{p} \vec{v}_{p} \\ \vec{v}+\vec{w} & =\left(a_{1}+b_{1}\right) \vec{v}_{1}+\cdots+\left(a_{p}+b_{p}\right) \vec{v}_{p}\end{aligned} \quad$ so $\left[\vec{v}+\vec{w}_{B}\right]_{B}=\left[\begin{array}{c}a_{1}+b_{1} \\ a_{2}+b_{2} \\ \vdots \\ a_{p}+b_{p}\end{array}\right]=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{p}\end{array}\right]+\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{p}\end{array}\right]$
(2) $c \vec{v}=\left(c a_{1}\right) \vec{v}_{1}+\cdots+\left(c a_{p}\right) \vec{v}_{p}$
so $[c \vec{v}]_{B}=\left[\begin{array}{c}c a_{1} \\ c a_{2} \\ \vdots \\ c_{a p}\end{array}\right]=c\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{p}\end{array}\right]=c[\vec{v}]_{B}$

