Lecture XXVIII: §5.7 Linear Transformations § 5.8 Operations with limen transformations
Recall $T: V \longrightarrow W$
lima transf

$$
\begin{aligned}
& \leadsto W(T)=3 \vec{v} \mathrm{mV}: T(\vec{v})=\vec{\Phi}_{\omega} \text { \& subspacatV } \\
& \text { (Null space 91T) } \\
& R(T)=\{\vec{\omega} m W: \vec{v}=T(\vec{r}) \text { fr mme } \vec{v} m v\} \\
& \text { subspace of } W \text { (Range of } T \text {) }
\end{aligned}
$$

El One-To-One / Onto:
Def T is one-to-one coringediex) if $T\left(\vec{v}_{1}\right)=T\left(\vec{r}_{2}\right)$ implies $\vec{v}_{1}=\vec{v}_{c}$
Def: T is on To (rossujedire) if every element of W cones from sou element m $(K R(T)=W$. Equivalently $\operatorname{rank}(T)=\operatorname{dim} W)$
Propsition T is me-to-one if end sly if $W(T)=\left\{\vec{Q}_{v}\right\}$ (nullity $\left.(T)=0\right)$
Reason: Assume T is me -to-me . If $\vec{v} m \omega(T)$, then $T(\vec{v})=\vec{\Phi}_{w}=T\left(\vec{\Phi}_{V}\right)$
This frees $\vec{r}=\vec{\Phi}_{r}$. We conclucle $\left.W(T)=3 \vec{\Phi}_{V}\right\}$.

- Assume $W(T)=\left\{\vec{D}_{v}\right\}$ a pick \vec{v}_{1}, \vec{v}_{2} with $T\left(\vec{r}_{1}\right)=T\left(\vec{r}_{2}\right)$. Then

$$
\begin{aligned}
\vec{\Phi}_{w} & =T\left(\vec{v}_{1}\right)-T\left(\vec{r}_{2}\right)=T\left(\vec{v}_{1}\right)+(-1) T\left(\vec{r}_{2}\right)=T\left(\vec{r}_{1}\right)+T\left(-\vec{v}_{2}\right) \\
& \left.=T\left(\vec{v}_{1}-\vec{r}_{2}\right) \text { so } \vec{v}_{1} \xrightarrow[\vec{v}_{2}]{\rightarrow} \text { in } W(T)=\mid \vec{Q}_{v}\right\} .
\end{aligned}
$$

That mans $\vec{v}_{1}-\vec{v}_{2}=\overrightarrow{0}$ so $\vec{v}_{1}=\vec{v}_{2}$.
Key example: (Taking cords) Fix V vector space with basis $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$
Let $T: \underset{\vec{v}}{V} \longrightarrow \mathbb{R}^{P}$

$$
\vec{v} \longmapsto[\vec{v}]_{B}=\text { cords of } \vec{v} \text { cloture To } B
$$

(If $\vec{v}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{p} \overrightarrow{v_{p}}$, then $[\vec{v}]_{B}=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{p}\end{array}\right]$
Prop: T is a $\underset{\text { limes tans tire }}{ }$ (limatim, $1-T_{0}-1$ and onTo.

- To show T is $1-t_{0-1}$: if's enough to check $\left.\mathcal{N}(T)=3 \overrightarrow{\Phi_{v}}\right\}$

By construction $[\vec{v}]_{B}=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$
mans $\vec{r}=0 \cdot \overrightarrow{v_{1}}+0 \cdot \vec{v}_{2}+\cdots+0 \cdot \vec{v}_{p}$ $=\vec{\oplus}_{v}+\vec{\oplus}_{v}+\ldots+\vec{\oplus}_{v}=\vec{\Phi}_{v}$
so $\mathcal{N}(T)=\left\{\overrightarrow{0}_{V}\right\}$

- Thew T onto: $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{p}\end{array}\right]=T(\vec{v})$ where $\vec{v}=a_{1} \vec{v}_{1}+\cdots+a_{p} \vec{v}_{p}$

So any rector in \mathbb{R}^{p} is in $B(T)$.
52. Invertible linear transformations
F ix $T: V \longrightarrow W$ a lines transformation
Defimitiss: T is insectible (r an isomorphism) if T is both $1-t_{0}-1$ and onto:
Reason: T is $1-t_{0}-1$ and nets if, and only if, every \vec{v} in W comes from exactly one $\vec{r} \mathrm{~m} V$
In other words, for every $\vec{\omega}$ in W there is a unique \vec{r} in V with $T(\vec{r})=\vec{\omega}$ So, we can define a "return to sendu" map $S: W \longrightarrow V$ where $S(\vec{w})=\vec{r}$ if \vec{v} is the unique rector in V with $T(\vec{v})=\vec{w}$ It is clear that $S(T(\vec{v}))=\vec{v}$ for even $\vec{v} \mathrm{~m} V$

$$
T\left(S\left(\overrightarrow{w_{0}}\right)\right)=\vec{\omega} \quad \vec{\omega} \text { in } W
$$

Proposition: S is a liver tionsformation
Past. (1) If \vec{w}_{1}, \vec{w}_{2} are in w, and $S\left(\vec{w}_{1}\right)=\vec{v}_{1}, S\left(\vec{w}_{2}\right)=\vec{v}_{2}$ (manning $T\left(\vec{v}_{1}\right)=\vec{w}_{1}$ and $\left.T\left(\vec{v}_{2}\right)=\vec{w}_{2}\right)$ then

$$
T\left(\vec{r}_{1}+\vec{v}_{2}\right)=T\left(\vec{v}_{1}\right)+T\left(\vec{v}_{2}\right)=\vec{w}_{1}+\vec{w}_{2}
$$

This mans that $S\left(\vec{w}_{1}+\vec{w}_{2}\right)=\vec{v}_{1}+\vec{r}_{2}=S\left(\vec{w}_{1}\right)+S\left(\vec{w}_{2}\right)$.
(2) $S(c \vec{\omega})=c S(\vec{\omega})$ is clucked similarly:
$S(\vec{\omega})=\vec{v}$ mans $T(\vec{v})=\vec{\omega} \quad S \theta \quad T(c \vec{v})=c \vec{\omega}$, maxing $S(c \vec{\omega})=c \vec{v}=c S(\vec{\omega}) /$

Example: (1) $T: \mathbb{R} \longrightarrow \mathbb{R}$ linear

$$
x \longmapsto 2 x
$$

$S: \mathbb{R} \rightarrow \mathbb{R}$

$$
y \longmapsto x \text { with } T_{(x)}=2 x=y \quad \text { so } x=\frac{y}{2}
$$

Condusion: $S: \mathbb{R} \rightarrow \mathbb{R}$ is the inverse to T (it's liver)

$$
y \longmapsto \frac{y}{2}
$$

(2) $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \quad$ fr a fixed $n \times n$ matrix A $\vec{x} \longmapsto A \vec{x}$
Q: What can we say about A if T is invertible?

- 1-t-1: $\quad \mathcal{N}(A)=\mathcal{N}(T)=\left\{\mathbb{V}_{V}\right\}$, so A is nm-singular
- into: $\quad B(A)=B(T)=\mathbb{R}^{n} \quad 2 \operatorname{ck} A=4$ Both conditions are equivalent to A being imectible

Conclusion T invertible mans A is iuncutithe
The insure map
S:

$$
\begin{aligned}
& \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \quad \text { is fine by } \\
& \vec{y} \longrightarrow \vec{x} \text { with } A \vec{x}=\vec{y}
\end{aligned}
$$

multiplication by the $n \times n$ matrix A^{-1} (so it's a linear map!)
Indeed, $A \vec{x}=\vec{y}$ fires $A^{-1}(A \vec{x})=A^{-1} \vec{y}$

$$
\begin{aligned}
\left(A^{-1} A\right) \vec{x} & =A^{-1} \vec{y} \\
\vec{x}=I_{n} \vec{x} & =A^{-1} \vec{y}
\end{aligned}
$$

33. Identity Trans formatim:

Fix a rector space V
Definition: The iduntely tans formation, denoted by $I_{V}: V \longrightarrow V$, is the lima Toustromation $I_{d}(\vec{v})=\vec{v}$ fo every $\vec{v} a V$.
Our calculations in $\S 4$ show:

Theorem: Fix rector spaces V, W \& a limes transformation $T: V \rightarrow W$
The following assertives are equivalent to each other:
(1) T is both $1-t_{0}-1$ and auto
(2) For every \vec{w} in W there is a unique \vec{r} in V with $T(\vec{r})=\vec{u}$
(3) There is a linear hansformation $S: W \longrightarrow V$ with

$$
\begin{array}{lll}
S(T(\vec{r}))=\vec{r} & \text { fr each } \vec{r} m V & {\left[S_{0} T=I d_{V}\right]} \\
T(S(\vec{\omega}))=\vec{\omega} & {\left[T_{0} S=I d_{w}\right]}
\end{array}
$$

bs "conpsitime"
§4. Composition of Linear Transformations:
Assume we have 3 vector spaces and z linear transformations

$$
T_{1}: U \longrightarrow V \quad ; \quad T_{2}: V \longrightarrow W
$$

We can "compose" these just as with rodinary functions of I variable

$$
\begin{aligned}
& T_{2} \circ T_{1}: U \longrightarrow W \quad \text { (read from right to } \\
& T_{2} \circ T_{1}(\vec{u})=T_{2}\left(T_{1}(\vec{u})\right) \quad \text { foamy } \vec{u} V
\end{aligned}
$$

(read from right to left: apply T_{1} first and then T_{2})

Example:

$$
\begin{array}{rlrl}
T_{1}: S_{4} & \longrightarrow 3_{3} & T_{2}: B_{3} & \longrightarrow M_{a t_{2 \times 3}} \\
f & \longmapsto \frac{d f}{d x} & T_{2}\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{lll}
a & 0 & b \\
c & d & 0
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
& T_{2} \circ T_{1}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=T_{2}\left(\frac{d}{d x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)\right) \\
& =T_{2}(\underbrace{a_{1}}_{a}+\underbrace{2 a_{2}}_{b} x+\underbrace{3 a_{3}}_{c} x^{2})=\left[\begin{array}{ccc}
a_{1} & 0 & 2 a_{2} \\
3 a_{3} & 0 & 0
\end{array}\right]
\end{aligned}
$$

\$5. Addition \& Scalar Multiplication
Just as with matrices, we can (1) add two limen transformations between the same vector spaces, and (2) scale a lima transf.
(1) $F: V \longrightarrow W$ lima
$G: V \longrightarrow W$
$\leadsto F+G: V \longrightarrow W$ limen

$$
\begin{gathered}
(F+G)(\vec{v})=F(\vec{v})+G(\vec{v}) \\
\text { ps all } \vec{r} m V
\end{gathered}
$$

(2) $F: V \longrightarrow W$ lima $\quad C F: V \longrightarrow W$ lives c scalar

$$
(c F)(\vec{v})=c \cdot \bar{F}(\vec{v}) \quad \underset{b_{\text {in }} w}{\text { foal }} \underset{\vec{v} m V}{ }
$$

Examples:

$$
\begin{array}{ll}
F: P_{3} \longrightarrow P_{3} & F(p)=\frac{d p}{d x} \\
G: P_{3} \rightarrow S_{3} & G(p)=P_{(-x)}
\end{array}
$$

$$
\begin{aligned}
& F\left(a+b x+c x^{2}+d x^{3}\right)=b+2 c x+3 d x^{2} \\
& G\left(a+b x+c x^{2}+d x^{3}\right)=a-b x+c x^{2}-d x^{3}
\end{aligned}
$$

- So $(F+G)\left(a+b x+c x^{2}+d x^{3}\right)=b+2 c x+3 d x^{2}+a-b x+c x^{2}-d x^{3}$

$$
=(a+b)+(2 c-b) x+(c+3 d) x^{2}-d x^{3}
$$

is linear $\left[\begin{array}{l}a \\ b \\ d\end{array}\right] \longmapsto\left[\begin{array}{c}a+b \\ 2 c-b \\ c+3 d \\ -d\end{array}\right]$
limen (at the level of standard words in 3_{3})

$$
\text { - }(3 F)\left(a+b x+c x^{2}+d x^{3}\right)=3 b+6 c x+9 d x^{2}\left[\begin{array}{l}
a \\
b \\
d
\end{array}\right] \rightarrow\left[\begin{array}{c}
3 b \\
6 c \\
9 d \\
0
\end{array}\right]
$$

