Lecture XXIX: § 5.9 Matux representions of limer transf
Recall: $T: V \longrightarrow W$ limar thonsformation is

- $1-t_{0}-1$ if $N(T)=\left\{\mathbb{D}_{v}\right\}$
- onto if $R(T)=W$
- imsertitle if both $1-t_{0}-1$ \& into. The insersemap $S: W \longrightarrow V$ is defined as $S(\vec{y})=\vec{x}$ if $T(\vec{x})=\vec{y}$.
Key fact: S is also a limer transtormation \&
(I)

$$
\begin{aligned}
S_{0} T & =I d v_{v} \\
(S(T(\vec{v})) & =\vec{r} \quad \text { frall } \vec{r} m \mathrm{~m})
\end{aligned}
$$

- Defire 3 operatims
§1. Matux Representation of a Limear Transformation
We will pareed as we did fo $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ limar Fix V, W vector spaces with $\operatorname{dim} V=n, \operatorname{dim} W=m$
Let $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis for V

$$
\left.C=3 \vec{w}, \ldots, \vec{w}_{m}\right\}
$$

\qquad
Gisen a limar transfromation $T: V \longrightarrow W$, we get $a_{n} m \times n$ maturx A as follous:

$$
\left\{\begin{array}{l}
T\left(\vec{v}_{1}\right)=a_{11} \vec{w}_{1}+a_{21} \vec{w}_{2}+\cdots+a_{m 1} \vec{w}_{m} \\
T\left(\vec{v}_{2}\right)=a_{12} \vec{w}_{1}+a_{22} \vec{w}_{2}+\cdots+a_{m 2} \vec{w}_{m} \\
\vdots \\
T\left(\vec{v}_{n}\right)=a_{1 n} \vec{w}_{1}+a_{2 n} \vec{w}_{2}+\cdots+a_{m n} \vec{w}_{m}
\end{array} \quad A=\left[\begin{array}{c}
a_{11} \cdots a_{1 n} \\
a_{21} \cdots a_{2 n} \\
\vdots \\
a_{m 1} \cdots a_{m n}
\end{array}\right]\right.
$$

Name: $A=$ matrix representation of T relative to the bases B of $V \& C$ of W
Notation: $A=[T]_{C B}$ coordinates of $T\left(\vec{r}_{1}\right)$ relative T_{0} th basis C
Observe $A=\left[\left[T\left(\overrightarrow{v_{1}}\right)\right]_{C} \cdots\left[T\left(\vec{v}_{n}\right)\right]_{C}\right] \quad m \times n$ matrix in $\mathbb{R}^{m} \quad$ in \mathbb{R}^{m}
Columns of A are the coordinates of $T\left(\vec{v}_{i}\right)$ relative $T_{0} C$, where \vec{v}_{i} is the $i^{-t h}$ basis element in B

Example $\quad T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ linear; B, C standard bases $m \mathbb{R}^{n} \& \mathbb{R}^{m}$ then $A=\left[T\left(\vec{e}_{1}\right) \cdots T\left(\vec{e}_{n}\right)\right]$

Examples: (1) $F: \beta_{3} \rightarrow \mathcal{F}_{2} \quad F(p)=\frac{d p}{d x}$

$$
F\left(a+b x+c x^{2}+d x^{3}\right)=b+2 c x+3 d x^{2}
$$

Take $\left.B=31, x, x^{2}, x^{3}\right\} \quad \operatorname{dem} \beta_{3}=4$

$$
\left.C=31, x, x^{2}\right\} \quad \operatorname{dim} \beta_{2}=3
$$

$$
\begin{array}{llll}
F(1)=0 & F(x)=1 & F\left(x^{2}\right)=2 x & F\left(x^{3}\right)=3 x^{2} \\
{[F(1)]_{C}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} & {[F(x)]_{C}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]} & {\left[F\left(x^{2}\right)\right]_{C}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]} & {\left[F\left(x^{3}\right)\right]_{C}=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]}
\end{array}
$$

Conclude: $\quad[F]_{C B}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$

$$
\begin{aligned}
& F\left(a+b x+c x^{2}+d x^{3}\right)=b+2 c x+3 d x^{2} \leadsto[\quad]_{c}=\left[\begin{array}{l}
b \\
2 c \\
3 d
\end{array}\right] \\
& {\left[\begin{array}{l}
b \\
2 c \\
3 d
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]}
\end{aligned}
$$

(2) $G: P_{2} \longrightarrow P_{2} G\left(a+b x+c x^{2}\right)=a-b x+c x^{2}$

Talu $B=C=\left\{1, x, x^{2}\right\}$

$$
\begin{array}{rlll}
G(1)=1 & G(x)=-x & G\left(x^{2}\right)=x^{2} \\
{[G(1)]_{C}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]} & {[G(x)]_{C}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]} & {\left[G\left(x^{2}\right)\right]_{C}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
\text { m }[G]_{C B}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] & \& \quad\left[\begin{array}{c}
a \\
-b \\
c
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
\end{array}
$$

(3) F: Mat 2x2 $\longrightarrow \Theta_{2} \quad F\left(\left[\begin{array}{l}a b \\ c \\ c\end{array}\right]\right)=d+(b-c) x+a x^{2}$

- Basis for $\Pi_{2 \times 2}: B=\left\{E_{11}, E_{12}, E_{a 1}, E_{22}\right\} \quad E_{11}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, etce.
- Basis for β_{2} : $C=\left\{1, x, x^{2}\right\}$

To compute $[F]_{B C}=3 \times 4$ matux we hase to write $F\left(E_{11}\right), \ldots, F\left(E_{12}\right)$ interms of C.

$$
\begin{aligned}
& F\left(E_{11}\right)=F\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=0+(0-0) x+1 x^{2}=x^{2} m\left[F\left(E_{11}\right)\right]_{c}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& F\left(E_{12}\right)=F\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right) \begin{array}{l}
a=1, b=c=d=0 \\
= \\
b=1, c=c=d=0
\end{array} \\
& F\left(E_{21}\right)=F\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)=0+(0-1) x+0 \cdot x^{2}=-x \leadsto\left[F\left(E_{21}\right)\right]_{c}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]
\end{aligned}
$$

Conclude: $[F]_{C B}=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$
Obsense: $\left[\begin{array}{c}a_{b} \\ c_{2}\end{array}\right] M_{a t_{2 \times 2}} \xrightarrow{F} \mathcal{Z}_{2} a_{0}+a_{1} x+a_{2} x^{2}$
$G \& H$ dipend nom chrice of bases B\&C.

$$
H_{0} F \circ G\left(\left[\begin{array}{l}
a \\
b \\
d
\end{array}\right]\right)=H_{0} F\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=H\left(d+(b-c) x+a x^{2}\right)=\left[\begin{array}{c}
d \\
b-c \\
a
\end{array}\right]
$$

Note $[F]_{B C}\left[\begin{array}{l}a \\ b \\ d\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}a \\ b \\ d \\ d\end{array}\right]=\left[\begin{array}{c}d \\ b-c \\ a\end{array}\right]$
So the botton $\operatorname{map} \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3}$ is nulliplicatern by $[F]_{B C}$.
Ex:

$$
\begin{array}{r}
F\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]\right)=4+(1-(-1)) x+2 x^{2}=4+2 x+2 x^{2} \\
{\left[F\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]\right)\right]_{C}=\left[\begin{array}{l}
4 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
-1 \\
4
\end{array}\right]} \\
\left.\left[\begin{array}{cc}
11 \\
& \quad 11
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]\right] B
\end{array}
$$

\$2. Propenties of mataix repusentations
(I) Fix $T: V^{\operatorname{Lim} n} W^{\operatorname{dim} m}$ limar tionst \& basis B_{V} for $V_{\&} B_{W}$ fos W Then, for esery \vec{r} m V, we have:

In pictures

Proof Write $B_{v}=3 \vec{v}_{1}, \ldots, \vec{v}_{n}\left\{\& B_{w}=\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\}\right.$, then

$$
[T]_{B_{w B_{v}}}=\left[\begin{array}{ccc}
{\left[T\left(\vec{v}_{1}\right)\right]_{B_{w}}} & \cdots & {\left[\begin{array}{c}
\left.T\left(\vec{v}_{n}\right)\right]_{B_{w}}
\end{array}\right]} \\
n^{\text {st }} \text { col }
\end{array}\right.
$$

Write $\vec{v}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n} \quad$ Then, using the fact that [$]_{B_{w}}$ is a limen Lust, we get
(II) Addition a Scalar Malt $T_{1}: V \longrightarrow W, T_{2}: V \longrightarrow W$ cereal

$$
\begin{aligned}
{\left[T_{1}+T_{2}\right]_{B_{W} B_{V}} } & =\left[T_{1}\right]_{B_{W} B_{V}}+\left[T_{2}\right]_{B_{w} B v} \\
{\left[C T_{1}\right]_{B_{W} B_{V}} } & =c\left[T_{1}\right]_{B_{w} B_{v}}
\end{aligned}
$$

(III) Compsition of lin transf \longleftrightarrow Matrix multiplication Pick linear transformations $F: V \rightarrow V$, basis Bu for U

$$
G: V \longrightarrow W
$$

$$
B_{V} \text { is } V
$$

$$
B_{w} \text { is } W
$$

Assume $\operatorname{den} V=n, \operatorname{dem} V=k, \operatorname{dim} W=m$
Then Go: $V \longrightarrow W$ satisfies

$$
\left[G_{m \times n}^{6}\right]_{B_{W} B_{U}}=[G]_{B_{W} B_{v}}{ }_{m \times k}^{=}{ }_{k \times n}^{[F]_{B_{V} B_{0}}^{=}}
$$

Reason: The (CHS) satisfies $\left([G]_{B_{W} B V}[F]_{B_{V} B U}\right)[\vec{u}]_{B_{U}}=\left[(G O F)_{(\vec{w}}\right]_{B_{W}}$

$$
\begin{aligned}
& {[T(\vec{v})]_{B_{w}}=\left[a_{1} T\left(\vec{v}_{1}\right)+\cdots+a_{n} T\left(\vec{r}_{n}\right)\right]_{B_{w}}}
\end{aligned}
$$

because $\left([G]_{B W B V}[F]_{B V B U}\right)[\vec{u}]_{B_{V}}=[G]_{B_{W} B V}\left([F]_{B_{V} B V}[\vec{u}]_{B_{V}}\right)=$

$$
=[G]_{B_{W} B V}[F(\vec{u})]_{B_{V}}=[G(F(\vec{u}))]_{B_{W}}=\left[(G \cdot F)_{(\vec{u})}\right]_{B_{w}}
$$

(1V) $T: V \longrightarrow W$ liman $\begin{aligned} & B_{V} \text { basis for } V \\ & B_{W} \longrightarrow W\end{aligned} \begin{aligned} & \operatorname{dem} V=n \\ & \operatorname{dem} W=n\end{aligned}$ Then: $\quad V \xrightarrow{T} W$

$\mathbb{R}^{n} \xrightarrow[{A=[T]_{B_{w} B_{v}}}]{\sim} \mathbb{R}^{m} \quad \tilde{T}=$ maltiplicatien by $A \underset{\substack{(m \times n \\ \text { motuix })}}{(T)}$
We can compute $N(T)$ \& $R(T)$ by working with A
Prop: (1) \vec{v} in $\mathcal{N}(T)$ if and mly if $[\vec{v}]_{B_{v}}$ is in $\mathcal{N}(A)$
(2) $\vec{\omega}$ in $B(T) \quad[\vec{\omega}]_{B_{\omega}}$ is in $B(A)$

In particular: . vellity $(T)=\operatorname{dem} \quad \mathcal{N}(T)=\operatorname{dim} d(A)=$ wellity (A)

- $\operatorname{rank}(T)=\operatorname{dem} R(T)=\operatorname{dem} R(A)=\operatorname{rank}(A)$

Consequence 1: Rank-Nullity Thirem for T
For Matius : $\operatorname{rank}(A)+\operatorname{mellity}(A)=\# \operatorname{cols}(A)$
For $T: V \rightarrow W: \quad \operatorname{rank}(T)+$ nellity $(T)=\operatorname{dim}(V)$ limen transt

Consequence 2: $T: V \longrightarrow W$ leman transtormatem, $\operatorname{dim} V=x$, $\operatorname{dim} W=m$ with bases B for $V \& C$ fos W respectirely. Then, T is imsertitle if, and aly if, $[T]_{C B}$ is insectetle (imparticular, $m=n)$. Furthermure, we hase $\left[T^{-1}\right]_{B C}=\left([T]_{C B}\right)^{-1}$

