Lecture XXX: \$6.2 Determimants
Q: What are determimarts?
A : Fr every $n \geqslant 2$ wedefine a function det: Mat
 Main poppecties:
(0) $\operatorname{det}(A)$ is a plypminial in the entries of A.
(1) A is simpular (is.,nm-imsertitle) if, and mly if, $\operatorname{det} A=0$ (we sow this for 2×2 matrices)
[Determinant Toots Invertiblity]
(2) det is multeplicative $(\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det} B)$
(3) Let is compatible with elementaryrow opecatines (we cantrack
(4) If A is upper tiangular, ie $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & a_{21} & \cdots & a_{2 n} \\ \vdots & \therefore & \ddots & \vdots \\ 0 & \ddots & 0 & a_{n n}\end{array}\right]$, thanges
$\operatorname{det} A=a_{11} a_{12} \cdots a_{n n}=$ purduct of diagonal entries
\longrightarrow o's below the diagmal
In particular: $\quad \operatorname{det} I_{n}=\operatorname{det}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right)\right)=\frac{1 \cdots 1}{1 \ldots \text { teres }}=1$
(5) $\operatorname{det}\left(A^{\top}\right)=\operatorname{det} A$
$W_{c}^{\prime} l l$ see a way to cmpute let A tia "row exparsin". (5) Says we can also cmpute it by "expanding by columus"
§2. The 2×2 case:
(Base case fr a reausive enstruction)

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad 2 \times 2 \quad \operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}
$$

We cluck the $6 p$ pofecties in the 2×2 case:
(0) Let A is a polypmiad in the entrie of A
(1) A invertible if and mly if det (A) $\neq 0$. $\left(A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}a_{22} & -a_{12} \\ -a_{21} & a_{11}\end{array}\right)\right)$
(If $\operatorname{det} A=0$, then $\left[\begin{array}{l}a_{11} \\ \varepsilon_{1}\end{array}\right]\left[\begin{array}{l}a_{12} \\ a_{22}\end{array}\right]$ are poppritemal, so $l d \operatorname{det} A$ nence A is singular]
(2) $\quad \operatorname{det}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]\right)=\operatorname{let}\left(\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right)=(a e+b g)(c f+d h)-$

$$
\begin{aligned}
& (a f+b h)(c e+d g)=a f / c f+a e d h+b g c f+b g d h-a f / c e-a f d \rho \\
& \text {-bhce }-b h d g=(a d-b c) h e+g f(b c-a d)=(a d-d c)(e h-g f)=\operatorname{det}\left(\left[\begin{array}{l}
a b \\
c d
\end{array}\right)\right) \operatorname{det}\left(\left[\begin{array}{l}
f \\
g h
\end{array}\right)\right.
\end{aligned}
$$

(3) (Next time : §6.3)
(4) $\operatorname{det}\left(\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]\right)=a d-b \cdot 0=a d$
(5) $\operatorname{det}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{\top}\right)=\operatorname{det}\left(\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]\right)=a d-c b=a d-b c=\operatorname{det}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)$
§3. Formulas for lager matrices:
Recurve approach: Define set for $n \times n$ matrices using determinants of submatices of size $(n-1) \times(n-1)$, starting far $n=3$
These sub matrices are obtained by removing row 1 \& each of the n columns of A (ore at a time). Name: Cofacter matrices
Note that this is chat we did to define cos pridercts in \mathbb{R}^{3}.
General Cofactors
For each $(i j) \quad$ we define on $(n-1) \times(n-1)$ matrix

$$
\begin{aligned}
& \text { now } \ell \\
& \text { index } \\
& \text { column } \\
& \text { impers }
\end{aligned} \quad M_{i j}=\text { delete now } i \& \text { col } j \text { fun } A
$$

Eg: $\quad A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 0 & 4 \\ -1 & 3 & 7\end{array}\right] \quad$ an $\quad \Pi_{11}=\left[\begin{array}{ll}0 & 4 \\ 3 & 7\end{array}\right] \quad \Pi_{21}=\left[\begin{array}{ll}2 & 1 \\ 3 & 7\end{array}\right] \quad \Pi_{12}=\left[\begin{array}{cc}2 & 4 \\ -1 & 7\end{array}\right]$
Def: $A_{i j}=(-1)^{i t j} \operatorname{det}\left(\Pi_{i j}\right)$
These numbers ane called co factors
Definition: $\operatorname{det}(A)=a_{11} A_{11}+a_{12} A_{12}+\cdots+a_{1 n} A_{1 n}$ fr n $n \geqslant 2$ (expansion of deft along $1^{\text {st }}$ now, alternating signs)

$$
\operatorname{det}([a])=a \quad(n=1)
$$

Remark: This difinitim is recussise in native (Base case is $n=1$) Check 2×2 definition matches the old one:

$$
\text { Let }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a(-1)^{1+1} \operatorname{det}(d)+b(-1)^{1+2} \operatorname{det}(c)=a d-b c
$$

Example $1 \quad A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 0 & 4 \\ -1 & 3 & 7\end{array}\right] \quad 3 \times 3$

$$
\text { Example 2 } \quad A=\left[\begin{array}{cccc}
1 & 2 & 0 & 2 \\
-1 & 2 & 3 & 1 \\
-3 & 2 & -1 & 0 \\
2 & -3 & -2 & 1
\end{array}\right]
$$

don't need to

$$
\operatorname{det} A=1 \operatorname{det}\left[\begin{array}{cccc}
-1 & 2 & 0 & 2 \\
1 & 2 & 3 & 1 \\
-3 & 2 & -1 & 0 \\
2 & -3 & -2 & 1
\end{array}\right]-2 \operatorname{det}\left[\begin{array}{rrrr}
1 & 4 & 0 & 2 \\
-1 & 2 & 3 & 1 \\
-3 & 2 & -1 & 0 \\
2 & -3 & -2 & 1
\end{array}\right]+0 \operatorname{det}\left[\begin{array}{rrrr}
1 & 2 & d & 2 \\
-1 & 2 & 3 & 1 \\
-3 & 2 & -1 & 0 \\
2 & -3 & -2 & 1
\end{array}\right]
$$

$$
-2 \operatorname{let}\left[\left.\begin{array}{rrrr}
1 & 2 & 0 & 2 \\
-1 & 2 & 3 & 1 \\
-3 & 2 & -1 & Q \\
2 & -3 & -2
\end{array} \right\rvert\,\right]
$$

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
2 & 3 & 1 \\
2 & -1 & 0 \\
-3 & -2 & 1
\end{array}\right] & =2 \operatorname{det}\left[\begin{array}{ll}
-1 & 0 \\
-2 & 1
\end{array}\right]-3 \operatorname{det}\left[\begin{array}{cc}
2 & 0 \\
-3 & 1
\end{array}\right]+1 \operatorname{det}\left[\begin{array}{cc}
2 & -1 \\
-3 & -2
\end{array}\right] \\
& =2(-1)-3 \cdot 2+1(-4-3)=-2-6-7=-15
\end{aligned}
$$

$$
\operatorname{det} \begin{aligned}
{\left[\begin{array}{ccc}
-1 & 3 & 1 \\
-3 & -1 & 0 \\
2 & -2 & 1
\end{array}\right] } & =-1 \operatorname{det}\left[\begin{array}{cc}
-1 & 0 \\
-2 & 1
\end{array}\right]-3 \operatorname{det}\left[\begin{array}{cc}
-3 & 0 \\
2 & 1
\end{array}\right]+1 \operatorname{det}\left[\begin{array}{cc}
-3 & -1 \\
2 & -2
\end{array}\right] \\
& =-1 \cdot(-1)-3(-3)+1(6+2)=1+9+8=18
\end{aligned}
$$

$\operatorname{det}\left[\begin{array}{ccc}-1 & 2 & 3 \\ -3 & 2 & -1 \\ 2 & -3 & -2\end{array}\right]=-1 \quad \operatorname{det}\left[\begin{array}{cc}2 & -1 \\ -3 & -2\end{array}\right]-2 \operatorname{det}\left[\begin{array}{cc}-3 & -1 \\ 2 & -2\end{array}\right]+3 \operatorname{det}\left[\begin{array}{cc}-3 & 2 \\ 2 & -3\end{array}\right]$

$$
=-1(-4-3)-2(6+2)+3(9-4)=7-16+15=6
$$

$$
\text { So } \operatorname{dat}(A)=(-15)-2.18-2.6=-15-36-12=-63
$$

$$
\begin{aligned}
& M_{11}=\left[\begin{array}{ll}
0 & 4 \\
3 & 7
\end{array}\right] \quad \text { ans } \operatorname{det} \Pi_{11}=0.7-4 \cdot 3=-12 \quad A_{11}=(-1)^{1+1} \quad \text { eta } M_{11}=-12 \\
& \Pi_{12}=\left[\begin{array}{cc}
2 & 4 \\
-1 & 7
\end{array}\right] \leadsto \operatorname{det} \Pi_{12}=2 \cdot 2+1 \cdot 4=18 \quad \& \quad A_{12}=(-1)^{1+2} \operatorname{det} \Pi_{12}=-18 \\
& \Pi_{13}=\left[\begin{array}{cc}
2 & 0 \\
-1 & 3
\end{array}\right] \leadsto \operatorname{det} \Pi_{13}=2.3-0 .(-1)=6 \text { \& } A_{13}=(-1)^{43} \text { set } \Pi_{13}=6 \\
& \text { So } \operatorname{det} A=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}=1 \cdot(-12)+2(-18)+1 \cdot 6=-12-36+6 \\
& =-42
\end{aligned}
$$

Obscuration: Since the definition of determinants is recursive, any claim about determinants is proven using an inderctim argument, maxing

- check it fr 2×2 case (Base Case)
- assume it fr $\left.(n-1) \times\left.\right|_{n-1}\right)$ case \& duck it $f>(n \times n)$ caseusing (Inductive Step) the pusiors cases

Papprition 1: If $1^{\text {st }}$ column of A is $\left[\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right]$ then $\operatorname{det}(A)=0$.
Proof: $\operatorname{det}\left[\begin{array}{ll}0 & b \\ 0 & d\end{array}\right]=0 \quad \checkmark$ so the claim is thee fo 2×2 matures - If $A=\left[\begin{array}{cccc}0 & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22} & . & a_{2 n} \\ 0 & a_{n 2} & \ldots & a_{n n}\end{array}\right]$ has size $n \times k$ then

$$
\operatorname{det} A=0 \quad \operatorname{det}\left[\begin{array}{cccc}
\begin{array}{ccc}
a_{12} & \ldots & a_{1 n} \\
\vdots & a_{22} & .
\end{array} a_{2 n} \\
0 & \vdots & & a_{n 2} \\
0 & a_{n 2} & a_{n n}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{cccc}
0 & a & & a_{1 n} \\
0 & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ldots & a_{2 n} \\
0 & a_{12} & \ldots & a_{n n}
\end{array}\right]+
$$

$$
+a_{13} \operatorname{det}\left[\begin{array}{cc|cc}
0 & a_{12} & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
0 & \vdots & a_{n 2} & \ldots
\end{array}\right] \cdots+(-1)^{1+4} \operatorname{det}\left[\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
0 & a_{n 2}
\end{array}\right]
$$

$(n-1) \times(n-1)$ matrices
with $1^{\text {st }}$ col $=\left[\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right]$
So by $(n-1) \times(n-1)$ car these determinants an $=0$

Conclucle $\operatorname{det} A=0+0=0$
Property 2: $\operatorname{det}\left[\begin{array}{ccccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & \cdots & a_{2} & \cdots & a_{2 n} \\ 0 & \ddots & \ddots & a_{n n} & \vdots\end{array}\right]=a_{11} a_{22} \cdots a_{n n}$ (product of diagonal entries)
Prod Use Papprition + induction

- 2×2 case ut $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]=a d-b .0=a d$
- Assume $(n-1) \times(n-1)$ case \& use definition

$$
\begin{aligned}
& =a_{11} \operatorname{det}\left[\begin{array}{ccc}
a_{22} \ldots a_{2 n} \\
0 & \ddots a_{n n}
\end{array}\right] \\
& (n-1) \times(n-1) c_{3 s} \\
& =a_{11} a_{22} \ldots a_{n n}, 0+\cdots+(-1)^{1+4} 0_{0} \\
& =0
\end{aligned}
$$

