Lecture XXXI: §6.3 Elementary Row Operatines \& determinants
Recall: det: Mat ${ }_{n \times n} \longrightarrow \mathbb{R}$
$A \longmapsto \operatorname{det}(A)$ a vember
Recussire defimition:

$$
\begin{aligned}
& x=1 \quad \operatorname{det}([a])=a \\
& n \geqslant 2 \quad \operatorname{let}\left(\left[\begin{array}{ll}
a_{11} \cdots a_{1 n} \\
\vdots & \cdots \\
a_{n 1} & \cdots a_{n n}
\end{array}\right]\right)=a_{11} A_{11}+a_{12} A_{12}+\cdots+a_{1 n} A_{1 n} \\
& \quad \text { (rims a atematal) }
\end{aligned}
$$

Ex $n=2 \quad$ et $\left(\left[\begin{array}{l}a b \\ c d\end{array}\right]\right)=a d-b c$

$$
\text { h=3 } A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad(\operatorname{det}(A)=0) \quad\left(\begin{array}{l}
A \text { is simgulas } \\
\\
\left(\cot _{1}+\cot _{3}=2 \cot 2\right)
\end{array}\right.
$$

$$
\begin{aligned}
\operatorname{det}(A) & =1 \operatorname{det}\left(\left[\begin{array}{l}
56 \\
8
\end{array}\right]\right)-2 \operatorname{det}\left(\left[\begin{array}{l}
46 \\
7
\end{array}\right]\right)+3 \operatorname{det}\left(\left[\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right]\right) \\
& =1(45-48)-2(36-42)+3(32-35) \\
& =1(-3)-2(-6)+3(-3)=-3+12-9=0
\end{aligned}
$$

Propeties $V(0) \operatorname{det}(A)$ is a prlypunial in the enties of A.
(1) A is simpular (is., mon-imentith) if, and aly if, $\operatorname{det} A=0$
[Detemminant Toots Invertilility]
(2) det is multeplicatire $(\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det} B)$
(3) Let is compatible with elementary row oprastines (we can wack \leftarrow TODAY
(4) If A is upper tionpular, ie $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{11} \\ 0 & a_{21} & - & a_{2 n} \\ \vdots & \ddots & \ddots & n_{n} \\ 0 & \therefore & 0 & a_{1 n}\end{array}\right]$ changes) then det $A=a_{11} a_{22} \ldots a_{n n}=$ purdenct of diagnal entries
\rightarrow o's below the diagmal
(4bis) If A is lowen thiangular $A=\left[\begin{array}{cccc}a_{11} & 0 & \cdots & - \\ a_{21} & a_{22} & - & \vdots \\ a_{n 1} & \cdots & \ddots & a_{n n}\end{array}\right]$, then

$$
\operatorname{det} A=a_{111} a_{12} \cdots a_{n n}
$$

In particular: $\quad \operatorname{ct} I_{n}=\operatorname{det}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & \ddots \\ 0 & 1\end{array}\right)\right)=\underbrace{1 \cdots \cdot 1}_{\text {numis }}=1$
(5) $\operatorname{det}\left(A^{\top}\right)=\operatorname{det} A$

Remark: Recursive frumps $m>$ Inductee proof (Base case: $n=2$)
(5) is KEY To show (3)
(2) will be used in (1)
81. Elementary row Operators

INPUT: $n \times n$ mature A ROW OPERATions OUTPUT: $n \times n$ matiox B Q: How are $\operatorname{det}(B) \& \operatorname{det}(A)$ related?
A :

Operation	$\operatorname{det}(B)$	Net Effect
(I) SWAP: Exchange Ross $R_{i} \leftrightarrow R_{j}$	$-\operatorname{det}(A)$	ripon change
(II)SCALE by $\alpha \neq 0$ $R_{i} \longrightarrow \alpha R_{i}$	$\alpha \operatorname{det}(A)$	multiply by scalar α
(III)COMBINE $R_{i} \rightarrow R_{i}+a R_{j}(i \neq j)$	$\operatorname{det}(A)$	no change

Why? Use $\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)$ a use column operation instead with the cofactor (reausive) formula
(I) SWAP $\quad A \xrightarrow[R_{i} \leftrightarrow R_{j}]{ } B_{(i \neq j)}$ [Ret swaps sign.]
(1) $n=2: \quad \operatorname{det}\left(\left[\begin{array}{ll}a b \\ c & d\end{array}\right]\right)=a d-b c \quad$ vs $\operatorname{det}\left(\left[\begin{array}{cc}c & d \\ a & b\end{array}\right]\right)=c b-\operatorname{da}=-\operatorname{det}\left(\left[\begin{array}{ll}a b \\ c d\end{array}\right]\right)$
(2) $n=3 \quad A=\left[\begin{array}{lll}1 & 0 & 2 \\ 1 & 1 & 2 \\ 3 & 4 & 5\end{array}\right] \quad$ et t $A=1 \operatorname{let}\left(\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]\right)-0+2 \operatorname{det}\left(\left[\begin{array}{ll}11 \\ 3 & 4\end{array}\right]\right)=\left(\begin{array}{ll}5-8)+2(4-3) \\ & =-3+2=-1\end{array}\right.$

$$
R_{2} \leftrightarrow R_{3}: \quad B=\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 4 & 5 \\
1 & 1 & 2
\end{array}\right] \quad \text { et } B=1 \operatorname{det}\left(\left[\begin{array}{ll}
4 & 5 \\
12
\end{array}\right]\right)-0+2 \operatorname{det}\left(\left[\begin{array}{c}
34 \\
11
\end{array}\right]\right)=(8-5)+2(3-4)
$$

$$
\begin{aligned}
R_{1} \leftrightarrow R_{2}: \quad B=\left[\begin{array}{lll}
11 & 2 \\
1 & 0 & 2 \\
3 & 4 & 5
\end{array}\right] \quad \operatorname{det} B & =\operatorname{det}\left(\left[\begin{array}{ll}
0 & 2 \\
4 & 5
\end{array}\right]\right)-\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right]\right)+2 \operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
3 & 4
\end{array}\right]\right) \\
& =-8-(5-6)+2-4=-8+1+8=1
\end{aligned}
$$

Rearm behind the rede: 2 ways to clack
$\left\{\begin{array}{l}\text { 1. Ouch rule applied by swapping columns } \\ \text { 2. Use } \operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)\end{array}\right.$
3. Show it directly: need to argue separately if Row 1 is swapped r not.

Consequence $\quad \operatorname{let}\binom{$ matrix with }{2 uprated nous }$=0 \quad\binom{$ surf 2 reflated rows T_{0} set }{ ut $(A)=-\operatorname{det}(A)$, so bt $(A)=0}$
(II) $\underset{\text { SCALE }}{ } A \underset{R_{i} \rightarrow \alpha R_{i}}{ } B$ fo $\alpha \neq 0 \quad[$ scale by $\alpha]$
(1) $n=2 \quad \operatorname{det}\left(\left[\begin{array}{cc}\alpha a & \alpha b \\ c & d\end{array}\right]\right)=(\alpha a) d-(\alpha b) c=\alpha(a d-b c)=\alpha \operatorname{det}\left(\left[\begin{array}{l}a b \\ c d\end{array}\right]\right)$

$$
\operatorname{det}\left(\left[\begin{array}{cc}
a & b \\
\alpha c & \alpha d
\end{array}\right]\right)=a(\alpha d)-b(\alpha c)=\alpha(a d-b c)=\alpha \operatorname{det}\left(\left[\begin{array}{c}
a b \\
c d
\end{array}\right]\right)
$$

$$
\begin{aligned}
& \text { (2) } n=3 \quad A=\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2 \\
3 & 4 & 5
\end{array}\right] \quad \operatorname{det}(A)=-1 \\
& R_{1} \rightarrow \alpha R_{1} \quad B=\left[\begin{array}{lll}
\alpha & 0 & 2 \alpha \\
1 & 1 & 2 \\
3 & 4 & 5
\end{array}\right]=\alpha \operatorname{det}\left(\left[\begin{array}{ll}
{[} & 2 \\
4 & 5
\end{array}\right]\right)-0+2 \alpha \operatorname{det}\left(\left[\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right]\right)=\alpha((5-8)+2(4-3)) \\
& \downarrow \\
& R_{2} \rightarrow \alpha(-3+2)=-\alpha \\
& R_{2} \rightarrow \alpha R_{2} \quad B=\left[\begin{array}{lll}
1 & 0 & 2 \\
\alpha & \alpha & 2 \alpha \\
3 & 4 & 5
\end{array}\right]=1 \operatorname{det}\left(\left[\begin{array}{ccc}
\alpha & \alpha & \alpha \\
4 & 5
\end{array}\right]\right)-0+2 \operatorname{det}\left(\left[\begin{array}{ll}
\alpha \alpha \\
3 & 4
\end{array}\right]\right)=-\alpha
\end{aligned}
$$

Rearms behind the rule: \quad it $A=a_{11} A_{11}+\cdots+a_{1 n} A_{\text {in }}$

1. If we.scale Row by α, we scale $a_{11}, \ldots, a_{1 n}$ by α in the copactor
2. If we scale another rule, we scale $A_{11}, \ldots, A_{\text {in }}$ by in the compacts formula $1 \rightarrow \operatorname{det}(B)$
(III) COMBINE $A \xrightarrow{R_{i} \rightarrow R_{i}+2 R_{j}}$
$i \neq j$ any member α [no effect]
$n=2 \quad d t\left(\left[\begin{array}{cc}a & b \\ c+\alpha a & d+\alpha b\end{array}\right]\right)=a(d+\alpha b)-b(c+\alpha a)=a d-b c+$

$$
\begin{aligned}
& +\alpha(a b-b a)=\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)+\alpha \operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
a & b
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \\
& n=3 \quad A=\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 2 \\
3 & 4 & 5
\end{array}\right] \quad \operatorname{det}(A)=-1
\end{aligned}
$$

$$
\begin{aligned}
& R_{1} \rightarrow R_{1}+R_{2} \quad B=\left[\begin{array}{ccc}
2 & 1 & 4 \\
1 & 1 & 2 \\
3 & 4 & 5
\end{array}\right] \quad \operatorname{det}(\beta)=2 \operatorname{det}\left[\begin{array}{l}
12 \\
4 \\
4
\end{array}\right]-1 \operatorname{det}\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right]+4 \operatorname{det}\left[\begin{array}{l}
11 \\
3
\end{array}\right] \\
& =2(5-8)-1(5-6)+4(4-3)= \\
& =-6+1+4=-1
\end{aligned}
$$

Reasms behind the rule: Distributere lows on \mathbb{R}

$$
\begin{aligned}
& \operatorname{det}(B)=\operatorname{det}(A)+\operatorname{det}\left(\underset{j}{j}\left[\begin{array}{c}
\alpha R_{j} \\
R_{j}
\end{array}\right]\right) \\
& =\operatorname{det}(A)+\alpha \operatorname{det}\left(\underset{j}{\downarrow}\left[\begin{array}{l}
R_{j} \\
\text { Scalle } \\
\text { nale } \\
R_{j} \\
R_{j}
\end{array}\right]\right)=\operatorname{det}(A)+\alpha \cdot 0=\operatorname{det}(A)
\end{aligned}
$$

§3 Alprithen fr amputing det A :
IDEA :(1) Recerd effect of now uductim operateons $m \operatorname{det}(A)$ as we go hum A to $B=E F(A)$
(2) B is upper Tiampular, so we can compute $\operatorname{det}(B)$ easily
(3) Trace back the ofenations to compute det (A) using (1) \& value of det (B)

Example: $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 0 & 4 \\ -1 & 3 & 7\end{array}\right] \quad$ Compute det (A) by putteng A into its

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 0 & 4 \\
-1 & 3 & 7
\end{array}\right] \xrightarrow[R_{2} \rightarrow R_{2}-2 R_{1}]{\text { (III) }}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -4 & 2 \\
0 & 5 & 8
\end{array}\right] \xrightarrow[R_{2} \rightarrow R_{2} /-4]{\text { (II) }}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1 / 2 \\
0 & 5 & 8
\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{3}-5 R_{2}]{\text { (II) }}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1 / 2 \\
0 & 0 & 21 / 2
\end{array}\right]
$$

Thad: $\operatorname{ctt} A \quad R_{3} \rightarrow R_{3}+R_{1} \quad \operatorname{det} A \quad \frac{-1}{4} \operatorname{det} A$ $E F(A)$ has $\operatorname{det}=1.1 \cdot \frac{21}{2}$ so $-\frac{1}{4} \operatorname{det} A=\frac{21}{2}$, ledet $A=-42$

Summary: Given A of size $n \times n$

- Use Gauss - Jordan elemination to put A into Echelon from

$$
\begin{aligned}
A \ldots \ldots & \ldots \ldots \\
& k \text { swaps } \\
& \\
& \text { l scales by nom-3yo } \\
& \text { members } c_{1}, \ldots, c e
\end{aligned}
$$

Then $\quad \operatorname{det}(B)=(-1)^{k} c_{1} \cdots c_{l} \operatorname{det}(A) \leadsto \operatorname{det} A=\frac{(-1)^{k} \operatorname{det} B}{c_{1} \cdots c_{l}}$ compute

Consequence: A is insectile if and roy if $\operatorname{det} A \neq 0$.
Reason: A inutile mans $E F(A)=\left[\begin{array}{cc}1 k y-x \\ \vdots & \vdots \\ 0 & 1\end{array}\right] \quad$ so $\operatorname{det}(B)=1$.
Converse: A is not insutitle mans $E F(A)$ has last now of O^{\prime} 's, sodet $B=0$.
§3. Set is multiplicative:
Theorem: If A, B have rise $n \times n$, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ We saw this last time for $n=2$
Ex

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right] & \text { de } A=2 \cdot 3-2=4 \neq 0 \\
B=\left[\begin{array}{ll}
-1 & 3 \\
1 & -2
\end{array}\right] & \text { ut } B=2-3=-1 \neq 0 \\
A B=\left[\begin{array}{cc}
2 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]=\left[\begin{array}{cc}
-2+2 & 6-4 \\
-1+3 & 3-6
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
2 & -3
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
\operatorname{det} A B=-(4) & =-4 \\
& =4(-1)
\end{aligned}
$$

$$
=4(-1)
$$

Consequence: If A is insentetle $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A}$
Q: Why is the product formula slid fo arbitrary n ?
Special case: If $A B$ is singular, then A or B are singular (HW) Consequence: $\operatorname{det}(A B) \& \operatorname{det} A \operatorname{det} B$ au both 0

Lemma: If A is singular \& B is any $n \times n$ mature, then $A B$ is also
Reason: ${ }_{n \times n}$ is singular if and sly if C^{\top} is (Recall: $\left(C^{\top}\right)^{-1}=\left(C^{-1}\right)^{\top}$)

- $(A B)^{\top}=B^{\top} A^{\top}$ \& if A is singular, so is A^{\top}.
- If A^{\top} is simpular, then $B^{\top} A^{\top}$ is singular (tick $\vec{x} \neq \vec{\theta}$ isth $A^{\top} \vec{x}=\overrightarrow{0} \quad$. Then $\left(B^{\top} A^{\top}\right) \vec{x}=B^{\top}\left(A^{\top} \vec{x}\right)=B^{\top} \cdot \overrightarrow{0}=\vec{\infty}$
So $B^{\top} A^{\top}$ is singular: $\vec{D} \neq \vec{x}$ is in $\mathcal{C}\left(B^{\top} A^{\top}\right)$). In particular, $A B=\left(B^{\top} A^{\top}\right)^{\top}$ is singular.

Proof of the Product Rule:
(1) If A is singular, then $A B$ is also singular so $\operatorname{det}(A B)=0=0 \cdot \operatorname{det} B=\operatorname{det} A \cdot \operatorname{det} B$
(2) If A is intreatible, then $A \sim_{n o w} I_{n}$ by a sequence of now operations $B \operatorname{det}(A)=\operatorname{det}\left(I_{n}\right)=1$ so $B=\frac{1}{\operatorname{det} A} \neq 0$ BUT ${ }^{(*)}$ The sam row operations fire $A B \sim B$ so

$$
B \operatorname{det}(A B)=\operatorname{det} B \quad \text { conclude }: \operatorname{det}(A B)=\frac{1}{B} \operatorname{det} B=\operatorname{det} A \operatorname{det} B
$$

(*) Optional : Row operations can be viewed as multiplying in the left by particular matrices. ($R=R_{s} \cdots R_{2} R_{1}$ if s elem now operations)
2×2 case

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

(I) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}c & d \\ a & d\end{array}\right] \quad\left(R_{1} \leftrightarrow R_{2}\right)$
(II) $\left[\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}\alpha a & \alpha b \\ c & d\end{array}\right]\left(R_{1} \rightarrow \alpha R_{1}\right) ;\left[\begin{array}{ll}1 & 0 \\ 0 & \alpha\end{array}\right]\left[\begin{array}{l}a b \\ c \\ c\end{array}\right]=\left[\begin{array}{cc}a & b \\ \alpha c & \alpha d\end{array}\right]\left(R_{2} \rightarrow \alpha R_{2}\right)$
(III) $\begin{cases}{\left[\begin{array}{ll}1 & \alpha \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}a+\alpha c & b+\alpha d \\ c & d\end{array}\right]} & \left(R_{1} \rightarrow R_{1}+\alpha R_{2}\right) \\ {\left[\begin{array}{ll}1 & 0 \\ \alpha & 1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a & b \\ c+\alpha a & d+\alpha b\end{array}\right]} & \left(R_{2} \rightarrow R_{2}+\alpha R_{1}\right)\end{cases}$

So if A now I_{n} by $R A=I_{n}$ for some special matrix $R\left(R=A^{-1}\right)$ Then $A B \sim B$ because $R A B=B$

