Lecture XXXII: \$4.1-4.2 Eigenvalues \& Eigenvectors §4.4 The Characteristic Polynumial
\$1, The Eigenralue Problem (EV): ("ligen" $=$ "self" in German)
Fix a vecter space V (ej $V=\mathbb{R}^{n}$) \& a limer tonsformation $T: V \longrightarrow V$.
Definition: A non-zew rector \vec{v} in V is called an eigenkectr of T if $T(\vec{v})=\lambda \vec{v}$ for sme scalor λ (called the eigentalue of \vec{v})
$\underline{E_{x}}: T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ with $T(\vec{x})=A \vec{x}$ fo smene $n \times n$ matux A

$$
A=\left[T\left(\vec{e}_{1}\right) \cdots T \vec{e}_{u}\right]
$$

Equivalut frmulation:

$$
\begin{aligned}
& A \vec{v}-\lambda \vec{v}=\left[\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right] \\
& \left(A-\lambda I_{n}\right) \vec{v}=\left[\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right] \quad \& v \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

EV Problem 2. Find λ rember with $\mathcal{W}\left(A-\lambda I_{n}\right) \neq\left\{\left[\begin{array}{l}0 \\ \dot{j}\end{array}\right]\right\}$
Name: $E_{\lambda}:=\mathcal{N}\left(A-\lambda I_{n}\right)=$ eigenspace fo ${ }^{n \times n}(=$ spacit all eigentectors wisth eigen value d)

- Equimbutly, find λ where $A-\lambda I_{n}$ is simgular (von-innertith) Advantage: We can use determimants! $[\operatorname{det}(C)=0$ maus C is simpular]
Definition: The characteristic pplysumial of A is

Obsurations $(1) X_{A}(t)$ is a degque x prlepraiial in t with leading temn $(-1)^{n}$
(2) Eigenvalues $=$ roots of X_{A} ma at most nof teem (conated with mellaplicity)
Ex: $\quad \begin{aligned} A=\left[\begin{array}{l}1-2 \\ 3\end{array} 4 \leadsto P_{A}(t)=\left[\begin{array}{cc}1-t & -2 \\ 3 & 4-t\end{array}\right]=(1-t)(4-t)-6\right. & =t^{2}-5 t+6 \\ & =(t-2)(t-3)\end{aligned}$
§z Examples.
(1) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right] \quad$ Eigenralues?
$A \cdot\left[\begin{array}{l}1 \\ 0\end{array}\right]=2\left[\begin{array}{l}1 \\ 0\end{array}\right] \& \quad A\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$2 \& 1$ ane ligenalues

$$
P_{A}(t)=\operatorname{det}\left(\left[\begin{array}{cc}
2-t & 0 \\
0 & 1-t
\end{array}\right]\right)=(2-t)(1-t)=(-1)^{2} t^{2}-3 t+2
$$

noots: 281 mo (only rigenralues)

$$
\begin{aligned}
& E_{1}=\mathcal{W}\left(A-1 I_{2}\right)=\mathcal{N}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\mathcal{N}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=\operatorname{Sp}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right)\right) \\
& E_{2}=\mathcal{N}\left(A-2 I_{2}\right)=\mathcal{N}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\right)=W\left(\left[\begin{array}{ll}
0 & 0 \\
0 & -1
\end{array}\right]\right)=\operatorname{Sp}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
\end{aligned}
$$

(2) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \quad E$ ignalues $=1$ (?) $\quad x_{A}(t)=\operatorname{det}\left(\left[\begin{array}{cc}1-t & 1 \\ 0 & 1-t\end{array}\right]\right)$

So 1 is the only eiguralue (doutle noot) $=(1-t)^{2}$

$$
E_{1}=\mathcal{N}\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\mathcal{N}\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=\operatorname{sp}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \quad \operatorname{dim} E_{1}=1
$$

(3)

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
5 & -1 \\
8 & -1
\end{array}\right] \quad \text { Eigenvalues? } \\
& P_{A}(t)=\operatorname{det}\left(\left[\begin{array}{cc}
5-t-1 \\
8 & -1-t
\end{array}\right]\right)=(5-t)(-1-t)+8=t^{2}-4 t+3
\end{aligned}
$$

Roots? Use quadratic fromula! $t^{2}+b t+c=0 \rightsquigarrow t=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}$

$\leadsto 2$ eigenralues: $1 \& 3$ (simple noots)

$$
\begin{aligned}
& E_{1}=\mathcal{N}\left(\left[\begin{array}{ll}
4 & -1 \\
8 & -2
\end{array}\right]\right)=\int p\left(\left[\begin{array}{l}
1 \\
4
\end{array}\right]\right) \quad\left[\begin{array}{ll|l}
4 & -1 & 0 \\
8 & -2 & 0
\end{array}\right] \xrightarrow[R_{2} \rightarrow R_{2}-2 R_{1}]{\longrightarrow}\left[\begin{array}{cc|c}
4 & -1 & 0 \\
0
\end{array}\right] x_{2}=4 x_{1} \\
& E_{3}=N\left(\left[\begin{array}{ll}
2 & -1 \\
8 & -4
\end{array}\right]\right)=S_{p}\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)\left[\begin{array}{ll|l}
2 & -1 & 0 \\
8 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{l|l}
2-1 & 0 \\
0 & 0
\end{array} 0 \quad x_{2}=2 x_{1}\right.
\end{aligned}
$$

$$
\operatorname{dmm} E_{1}=\operatorname{dm} E_{3}=1
$$

Obs: $B=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{l}1 \\ 4\end{array}\right]\right\}$ is a basis for \mathbb{R}^{2} \& in thes basis
 $\left(T\left(\overrightarrow{v_{1}}\right)=3 \overrightarrow{v_{1}} \quad \& T\left(\overrightarrow{v_{2}}\right)=\vec{v}_{2}\right)$
(4) Eigenvalues can be complex members ($\$ 4.6$)

- $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \quad X_{A}(t)=\operatorname{let}\left(\left[\begin{array}{cc}-t & 1 \\ -1 & -t\end{array}\right]\right)=t^{2}+1$ has wo mal

Otee the conplex numbers $t= \pm \sqrt{-1}=i$
§ 2 Why solse the EV piotlem?
(1) Diagonalize limean hansformateres $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$
(Find a basis $B=3 \vec{v}_{1}, \ldots, \vec{v}_{n}$ \} of eigensecters, so

$$
[T]_{B B}=\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
0 & \ddots & \lambda_{n}
\end{array}\right]^{\lambda_{1}} \quad \begin{array}{ccc}
\lambda_{n} & \text { (atlowing refelitims) } \\
& &
\end{array}
$$

(Last example)
(2) Sohring lifferential eperations mo MATH 2415, 2255

Leg: $T: \mathcal{F} \longrightarrow \tilde{\mathcal{F}}$ where $\tilde{F}=$ differutiable functives in, variable

$$
\left.f \longmapsto \frac{d f}{\partial x} \quad \text { hos eigensectr } \quad f_{(x)}=e^{x} \quad\left(f^{\prime}=e^{x}\right)\right)
$$

(3) Calculating proers of matives $A, A^{2}, A^{3}, \ldots ., A^{100}, \ldots$.

Ex: Fix a raph G:

$$
\begin{gathered}
L_{3}^{2} \\
A^{2}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
\end{gathered}
$$

$A=$ adjacency matux 3×3

$$
\begin{aligned}
& \left.A=\begin{array}{lll}
1 & 1 & 2 \\
3 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \\
& \ldots A^{l}=\underbrace{A \cdots \cdot \cdot A}_{l \text { temes }}
\end{aligned}
$$

$$
a_{i j}=\# \text { edges between is } j
$$

$$
\text { (ij) unty: paths of lemgth } 2 \text { staver, }
$$

$$
i \& j
$$

(iij) entry $=$ \# $\#$ of paths of lempth l Letween i j j

$$
\begin{aligned}
& \text { - } A=\left[\begin{array}{ll}
2 & -1 \\
1 & 2
\end{array}\right] \\
& P_{A}(t)=\operatorname{let}\left[\begin{array}{cc}
2-t & -1 \\
1 & 2-t
\end{array}\right]=(2-t)^{2}+1 \\
& =t^{2}-4 t+5 \\
& \leadsto t^{2}-4 t+5=0 \text { has solutions } t=\frac{4 \pm \sqrt{4^{2}-20}}{2}=\frac{4 \pm \sqrt{-4}}{2}=\frac{4 \pm 2 i}{2} \\
& =2 \pm \text { そ }
\end{aligned}
$$

- If A is diagnal, then $A^{l}=\left[\begin{array}{ccc}a_{11}^{l} & & 0 \\ 0 & a_{22} & 0 \\ 0 & \ddots a_{n n}^{l}\end{array}\right] \quad$ is easy to do
- If A is diagralizalle (moaning $T(\vec{x})=A \cdot \vec{x}$ is diagmalizalle) well see that A^{l} is also easy to confute
§3. Proputies of Eigenvalues:
Properties: Fix an $n \times n$ matrix A
(1) A has at must n eigenvalues (wanted with multiplicity) Why? eigenvalues $=$ sots of $P_{A}(t)$ \& $P_{A}(t)$ has degree n in t.
(2) If λ is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k} $(f, k=1,2,3, \ldots)$
Why? $A \vec{v}=\lambda \vec{v}$ inflies $A^{2} \vec{v}=A(A \vec{r})=A \lambda \vec{r}=\lambda A \vec{r}=\lambda \lambda \vec{r}$ $=\lambda^{2} \vec{r}$

Similarly $A^{k} \vec{v}=A^{k-1}(A \vec{r})=A^{k-1}(\lambda \vec{r})=\lambda A^{k-1} \vec{v}=\lambda \lambda^{k-1} \vec{r}=\lambda^{k} \vec{v}$.
(3) If A is invertible $\& \lambda$ is an eigenvalue of A, then $\lambda \neq 08$
y_{λ} is an eigenvalue of A^{-1} \& \& $E_{\lambda}(A)=E_{\lambda^{-1}}\left(A^{-1}\right)$
Why? If $\lambda=0$ is an eigenvalue then $A \cdot \vec{v}=0 \vec{v}=\overrightarrow{0}$ for $\operatorname{srn} \vec{r} \neq \vec{\infty}$ so $\mathcal{N}(A) \neq 3 \vec{D}\}$ meaning A is singular. This is a contradiction!

Now $\quad A \vec{v}=\lambda \vec{v} \quad$ fr $\vec{v} \neq \vec{\infty}$
Multiply by A^{-1} in the left on both sides:

$$
\vec{v}=A^{-1} A \vec{v}=A^{-1} \lambda \vec{v}=\lambda A^{-1} \vec{v}
$$

So $\frac{1}{\lambda} \vec{v}=A^{-1} \vec{v}$ So $\frac{1}{\lambda}$ is an eigenvalue for A^{-1}.
This process can be eusersed so the eigenvectors are the same!

Thus: $E_{\lambda}(A)=E_{\lambda^{-1}}\left(A^{-1}\right)$.
(4) $A \& A^{\top}$ have the save eigusectors because $P_{A}(t)=P_{A^{\top}}(t)$

$$
\left(P_{A^{t}}(t)=\operatorname{det}\left(A-t I_{n}\right)=\operatorname{det}\left(\left(A-t I_{n}\right)^{T}\right)=\operatorname{det}\left(A^{T}-t I_{n}^{n}\right)=\hat{P}_{A^{\top}}(t)\right)
$$

