Lecture XXXIII: §4.5 Eigenvalues and Eigenspaces
Recall: Last time we defined the characteristic polynninal of an un matrix, the eigenvalues \& ligensecters of the matrix.

A $n \times n$ matrix $\sim m s$ characteristic prymanial of $A$ (ail)

$$
P_{A}(t)=\operatorname{det}\left(A-t I_{n}\right)=\operatorname{det}\left(\left[\begin{array}{lllll}
a_{12} & - & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} t & \cdots & a_{n} \\
a_{n 1} & a_{n 2} & \cdots & a_{n} \\
a_{n 2} & 1
\end{array}\right]\right)
$$

- degree $n$ polynomial in $t$
- Coefficient of $t^{n}=(-1)^{n}$
- $\lambda$ is an eiguralue of $A \quad \longleftrightarrow P_{A}(\lambda)=0$

$$
(A \vec{v}=\lambda \vec{v} f r \sin \vec{r} \neq \vec{\theta})
$$

( $\lambda$ is a wot of $P_{A}$ )

- $E_{\lambda}(v)=\left\{\vec{v}\right.$ in $\left.\mathbb{R}^{n}: A \vec{v}=\lambda \vec{v}\right\}=\mathcal{N}\left(A-\lambda I_{n}\right)$ eigenspace fo $\lambda$

1) A dequee $n$ pplyannial has at most $n$ roots 1 but they can be complex orval!). Roots come with multiplicities.

$$
P_{A}(t)=(-1)^{n}\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \cdots\left(t-\lambda_{n}\right)
$$



- Algebraic multiplicity of $\lambda=$ number of times $\lambda$ appears in the list
- Geometric multiplicity of $\lambda=\operatorname{dim} E_{\lambda}(A)$ $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$.

Propsition: Geometric multiplicity $\leqslant$ Algebraic multiplicity
Examples $(1) A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \quad P_{A}(t)=\operatorname{det}\left(\left[\begin{array}{cc}1-t & 1 \\ 0 & 1-t\end{array}\right]\right)=(1-t)^{2}=(t-1)^{2}$
I eigurabue : $\lambda=1 m$ algebraic multiplicity $=2$

$$
E_{1}(A)=\mathcal{N}\left(A-I_{2}\right)=\mathcal{N}\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=\operatorname{Sp}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)\left\{\begin{array}{ll}
y=0 \\
0=0
\end{array} \quad \operatorname{sen} s\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
0
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right.
$$

$\lambda=1$ has geometric multiplicity $1=\operatorname{dim} E_{1}(\mathbb{A})$. \& $1 \leqslant 2$.

$$
\text { (2) } \begin{aligned}
& A= {\left[\begin{array}{ccc}
1 & 0 & -2 \\
1 & 3 & 1 \\
1 & 3 & 1
\end{array}\right] } \\
&\left.\begin{array}{rl}
P_{A}(t) & =\operatorname{det}\left(\left[\begin{array}{ccc}
1-t & 0 & -2 \\
1 & 3-t & 1 \\
1 & 3 & 1-t
\end{array}\right]\right) \\
& =(1-t)((3-t)(1-t)-3)-2(3-(3-t)) \\
3 & 1-t
\end{array}\right]-0+(-2) \operatorname{dt}\left[\begin{array}{cc}
1 & 3-t \\
1 & 3
\end{array}\right] \\
&=(1-t)\left(t^{2}-4 t+3-3\right)-2 t=t^{2}-4 t-t^{3}+4 t^{2}-2 t \\
&=-t^{3}+5 t^{2}-6 t=-t\left(t^{2}-5 t+6\right)=-t(t-2)(t-3) .
\end{aligned}
$$

m Eigenvalues: $\lambda=0,2 \& 3$ all with algebraic multiplecity 1

$$
\begin{aligned}
& \text { - } E_{0}(A)=\mathcal{N}\left(A-O I_{3}\right)=\mathcal{N}(A)=\operatorname{Sp}\left(\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]\right) \\
& {\left[\begin{array}{ccc}
1 & 0 & -2 \\
1 & 3 & 1 \\
1 & 3 & 1
\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{3}-R_{2}]{\longrightarrow}\left[\begin{array}{ccc}
1 & 0 & -2 \\
1 & 3 & 1 \\
0 & 0 & 0
\end{array}\right] \underset{R_{2} \rightarrow R_{2}-R_{1}}{\longrightarrow}\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 3 & 3 \\
0 & 0 & 0
\end{array}\right] \xrightarrow[R_{3} \rightarrow \frac{R_{3}}{3}]{\longrightarrow}\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 z \\
-z \\
z
\end{array}\right]=z\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]} \\
& \text { - } E_{2}(A)=N\left(A-2 I_{3}\right)=N\left(\left[\begin{array}{ccc}
-1 & 0 & -2 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right]\right)=\operatorname{Sp}\left(\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right) \\
& {\left[\begin{array}{ccc}
-1 & 0 & -2 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right] \xrightarrow[\substack{R_{2} \rightarrow R_{2}+R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}}]{\longrightarrow}\left[\begin{array}{ccc}
-1 & 0 & -2 \\
0 & 1 & -1 \\
0 & 3 & -3
\end{array}\right] \xrightarrow[\substack{R_{3} \rightarrow R_{3}-3 R_{2} \\
R_{1} \rightarrow-R_{1}}]{\longrightarrow}\left[\begin{array}{ccc}
\left.\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
\end{array}\right.} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 z \\
z \\
z
\end{array}\right]=z\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]} \\
& \text { - } E_{3}(A)=\mathcal{N}\left(A-3 I_{3}\right)=\mathcal{N}\left(\left[\begin{array}{ccc}
-2 & 0 & -2 \\
1 & 0 & 1 \\
1 & 3 & -2
\end{array}\right]\right)=\operatorname{sp}\left(\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right)
\end{aligned}
$$

All geometric multiplicities are 1

Definition: $A$ is defective if it has an eigenvalue $\lambda$ with geometric melt $\lambda<$ algebraic mull of $\lambda$ ${ }^{*}$ stuck
Note: Example (1) was defective \& (2) was not.
Q: Why is this relevant?
A: When $A$ is non-defectire, then $\mathbb{R}^{n}$ has a basis consisting of eigenvectors $\ln A$ (Weill see why Next Time!)
Example above: $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 1 & 3 & 1 \\ 1 & 3 & 1\end{array}\right]$ is undefectire
$\mathbb{R}^{3}$ has basis $\left.B=3\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}$ (eigunctios $\left.f s A\right)$
eigenvalues : $0 \quad 2 \quad 3$
Def: An $n \times n$ matux $A$ is called diagonalizable if $\mathbb{R}^{n}$ has a basis consisting of eigenvectors fr $A$.
Q: Where is the name "diagnalizable" coming form?
Recall: A determines a linear Transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ $\vec{x} \longmapsto A \vec{x}$
If $A$ is "diagmalizable" we can find a basis $B \rightarrow \mathbb{R}^{4}$ $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\} \quad$ of eigenvectors Eiguralues: $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (possibly upeated!)
In this situation $T\left(\vec{v}_{1}\right)=\lambda_{1} \vec{r}_{1}$ so $\left[T\left(\vec{r}_{1}\right)\right]_{B}=\left[\begin{array}{c}\lambda_{1} \\ 0 \\ 0\end{array}\right]$,
$T\left(\vec{r}_{2}\right)=\lambda_{2} \vec{v}_{2}$ so $\left[T\left(\vec{v}_{2}\right)\right]_{B}=\left[\begin{array}{c}0 \\ \lambda_{2} \\ \vdots \\ 0\end{array}\right]$, etc.
Conclude: $[T]_{B B}=\left[\begin{array}{ccc}\lambda_{1} & & \\ & \lambda_{2} & 0 \\ 0 & \ddots & \lambda_{n}\end{array}\right]$ is diagonal.
Note that. $A=[T]_{E \in}$ where $\left.E=3 \vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ standard basis fr $\mathbb{R}^{n}$
Q: How to relate these 2 matrices?
oder is impritant
A: Write $S=\left[\begin{array}{lll}\overrightarrow{v_{1}} & \cdots & \overrightarrow{v_{n}}\end{array}\right]$ (put the basis of eigenvedoes

- $S$ is invertible because cols are lin. indef.
- Claim : $S^{-1} A S=\left[\begin{array}{cccc}\lambda_{1} & & & 0 \\ & \ddots & 0 \\ 0 & & \lambda_{n}\end{array}\right]$ (Equuraleutly: $A S=S\left[\begin{array}{cc}\lambda_{1} & \\ \vdots & 0 \\ 0 & \lambda_{n}\end{array}\right]$

Why? Compare Columns of both AS \& $S\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & 0 \\ 0 & \lambda_{n}\end{array}\right]$

$$
\begin{aligned}
& \operatorname{col}_{1}(A S)=A \cos (S)=A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}=\operatorname{col} \\
& b \vec{v}_{1} \text { in } E_{\left.\lambda_{1} \mid A\right)}\left(S\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & 0 \\
\lambda_{n}
\end{array}\right]\right) \\
& \operatorname{col}_{2}(A S)=A \operatorname{col}_{2}(S)=A \vec{v}_{2}=\lambda_{2} \vec{r}_{2}=\operatorname{col}\left(S\left[\begin{array}{cc}
\lambda_{1} & 0 \\
\vdots & \ddots \\
0 & \lambda_{n}
\end{array}\right]\right)
\end{aligned}
$$

Same is true for the rest of the columns.
Conclusion: $A$ is diagmalizable if we can find an invertible maticx $S$ such that $S^{-1} A S=D$ is a diagonal matrix.
In this case: Columns of $S=$ basis of eigenvectors of $A$
Entries of $D=E$ igensalues of $A$

Example: $A=\left[\begin{array}{ll}5 & -1 \\ 8 & -1\end{array}\right] \quad P_{A}(t)=\operatorname{det}\left(\left[\begin{array}{cc}5-t & -1 \\ 8 & -1-t\end{array}\right]\right)=\begin{aligned} & t^{2}-4 t+3 \\ & \end{aligned}$ $\lambda=1,3$ are the orly eigenvalues (both have alg milt $=1$ )
Last time: $\quad E_{1}(A)=\mathcal{N}\left(\left[\begin{array}{cc}4 & -1 \\ 8 & -2\end{array}\right]\right)=S_{p}\left(\left[\begin{array}{l}1 \\ 4\end{array}\right]\right)$

$$
E_{3}(A)=W\left(\left[\begin{array}{cc}
2 & -1 \\
8 & -4
\end{array}\right]\right)=S_{p}\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)
$$

Germ nut of 183 is also 1 , so $A$ is not defective
$B=\left\{\left[\begin{array}{l}1 \\ 4\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ is a basis of eigenvectors, so $A$ is diagnaligable

$$
\begin{aligned}
& S=\left[\begin{array}{ll}
1 & 1 \\
4 & 2
\end{array}\right] \text { so } S^{-1}=\frac{1}{\operatorname{set} S}\left[\begin{array}{cc}
2 & -1 \\
-4 & 1
\end{array}\right]=\frac{1}{-2}\left[\begin{array}{cc}
2 & -1 \\
-4 & 1
\end{array}\right] \\
& \operatorname{ma} S^{-1} A S=D=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
\end{aligned}
$$

Advantage of diagmalizable matrices: computing prover is easy!

$$
\begin{aligned}
& \text { - } D=\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & 0 \\
& & \lambda_{n}
\end{array}\right] \quad m \quad D^{2}=\left[\begin{array}{ccc}
\lambda_{1}^{2} & & \\
0 & \ddots & \\
0 & \ddots \lambda_{n}^{2}
\end{array}\right], D^{3}=\left[\begin{array}{ccc}
\lambda_{1}^{3} & 0 \\
0 & \ddots & \\
0 & & \lambda_{n}^{3}
\end{array}\right], \ldots, D^{k}=\left[\begin{array}{ccc}
\lambda_{1}^{k} & & \\
& \ddots & \\
& \lambda_{n}^{k}
\end{array}\right] \\
& \text { - } S^{-1} A S=D m A=S D S^{-1} \\
& A^{2}=\left(S D S^{-1}\right)^{2}=\left(S D S^{-1}\right)\left(S D S^{-1}\right)=S D \underbrace{S^{-1} S}_{I_{n}} \Delta S^{-1}=S D^{2} S^{-1} \\
& A^{3}=\left(S D S^{-1}\right)\left(S D S^{-1}\right)^{2}=S D S^{-1} S D^{2} S^{-1}=S D^{3} S^{-1}
\end{aligned}
$$

In general: $\quad A^{k}=S D^{k} S^{-1} \quad \& \quad D^{k}=\left[\begin{array}{ccc}\lambda_{1}^{k} & 0 \\ 0 & \ddots & \lambda_{n}^{k}\end{array}\right]$ frame $k \geqslant 0$
Example: $\quad A=\left[\begin{array}{ll}5 & -1 \\ 8 & -1\end{array}\right] \quad D=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right] \quad S=\left[\begin{array}{ll}1 & 1 \\ 4 & 2\end{array}\right] \quad S^{-1}=\frac{1}{2}\left[\begin{array}{cc}-2 & 1 \\ 4 & -1\end{array}\right]$

$$
A^{6}=S D^{6} S^{-1}=\left[\begin{array}{ll}
1 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3^{6}
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
-2 & 1 \\
4 & -1
\end{array}\right]=\left[\begin{array}{ll}
1457 & -364 \\
2912 & -727
\end{array}\right]
$$

Next time: We'll see why nm-defectise matrices are diagnalizable

Proputies of eigenvalues (in HW/O)
(1) If $\lambda$ is an eigentaler of $A$, then $\lambda^{k}$ is an eigeuralue of $A^{k}$ ( $f$ f $k=1,2,3, \ldots$ )
(2) If $A$ is insectifle $\& \lambda$ is an eigenvalue of $A$, then $\lambda \neq 08$ $y_{\lambda}$ is an ligenralue of $A^{-1}$. \& $E_{\lambda}(A)=E_{\lambda^{-1}}\left(A^{-1}\right)$
(3) $A$ \& $A^{\top}$ have the same eigensectors because $P_{A}^{(t)}=P_{A^{\top}}(t)$
(4) If $\lambda$ is an rigenvalue of $A \& \beta$ is any nember, then $(\lambda+\beta)$ is an eigenvalue of $A+\beta I_{n}$.
Why? $+\overrightarrow{\vec{v}}=\lambda \vec{v} \quad \vec{r} \not \overrightarrow{0}$
$\left(A+B I_{n}\right) \vec{v}=A \vec{v}+B \vec{v}=(\lambda+B) \vec{v} \quad \vec{v} \neq \overrightarrow{0} \quad$ so $\vec{v}$ is an ligensecter with eigenralue $\lambda+\beta$.
Example $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 1 & 3 & 1 \\ 1 & 3 & 1\end{array}\right] \quad P_{A}(t)=-\lambda(\lambda-2)(\lambda-3)$

- A simpular $(\lambda=0$ is an rigurclue $)$
- $0^{2}, 2^{2}, 3^{2}$ are igentalues of $A^{2}, 0,2^{3}, 3^{3}$ are eigeuralues of $A^{3}$
- Eigenvalues of $A-5 I_{3}=\left[\begin{array}{ccc}-4 & 0 & -2 \\ 1 & -2 & 1 \\ 1 & 3 & -4\end{array}\right]$ are $\begin{aligned} & 0-5,2-5,3-5 \\ & =-5,-3,-2\end{aligned}$

