Lecture XXXIV: $\$ 4.7$ Similarity Transformations \& Diagonalization
Recall: Last time we defined defectere/mu-defecties matrices by comparing algebraic \& genetic multiplicities of eigenvalues (\cot of $P_{A}(t)$)
A $n \times n$ matrix. Then: λ liguralee of $A \longleftrightarrow E_{\lambda}(A)=d N(A-\lambda I d) \neq\{\vec{D}\}$

- Two different multiplicities tor eigenvalues:
$\left\{\begin{array}{l}\text { - alg multiplicity of } \lambda=\text { number of times } \lambda \text { appears as a wot of } P_{A}(t) \\ \text { - gometric multiplicity of } \lambda=\operatorname{dem} E_{\lambda}(A)\end{array}\right.$
Key imqualities: $1 \leqslant$ Germ. molt $\lambda \leqslant$ Alp Melt of λ (λ eigenvalue $\begin{gathered}\text { of } A \text {) }\end{gathered}$
Of: $A \times n$ um defective if Gemmult $=$ alg milt for all eigenabues of Δ
Ex: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is nior-defectise $P_{A}(t)=(t-1)^{2} \& E_{1}(A)=\mathbb{R}^{2}$
AIs malt of $1=$ groom melt $\cdot d 1=2$
$A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is defective $\left.\quad P_{A} \mid t\right)=(t-1)^{2} \quad \& \quad E_{1}(A)=\rho_{p}\left(\left[\begin{array}{l}1 \\ {[0]}\end{array}\right]\right)$
Aigmult of 1 is 2 but 6 cm mut $=1$
Definition A is diagonalizable if \mathbb{R}^{n} has a basis B consisting of eigensedters fo A Equimantly, we can find a diagonal mature $D=\left[\begin{array}{lll}d_{1} & & 0 \\ 0 & \ddots & d_{n}\end{array}\right]$ and an insutible matrix S with $S^{-1} A S=D$
In this situation, Coleus of S are the vectors in $B \& d, \ldots d_{n}$ are the eigenvalues for each vector $\vec{v}_{1}, \ldots, \vec{v}_{n}$ of B (in the same roller as d!!
DeL: To $n \times n$ matrices A, C ane called similar if $C=S^{-1} A S$ fo some S This says $A \& C$ represent the same lima Transf $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ in different bases $C=[T]_{\text {SB }}$ where $B=$ columns of S \& $A=[T]_{E E}$

TODAY: (1) A un-defectire \& with only Real eigurates is ALWAYS diagmalizable
(2) Sym mantric matrices hare orly real ligunalues \& are diagnaliz able Furthurre eigenspaces are mutually orthogmal
\$1. Linear independence of eigenvectors:
THEOREM1: Fix A an $n \times n$ matrix and a list of k distinct eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$. Pick one eigentector $\vec{v}_{j} \neq \vec{\Phi}$ fr each j (if $A \vec{v}_{j}=\lambda_{j} \vec{v}_{j}$). Then, $\left.S=3 \vec{v}_{1}, \ldots, \vec{r}_{k}\right\}$ is linearly indep un R^{n}

Why?. $k=1 \quad \vec{v}_{1} \neq \vec{D}$ so $S=\left\{\vec{v}_{1}\right\}$ is lin. index.

- Assume $l e 1$ \& argue by contradiction. Supposes $\left.S=3 \vec{v}_{1} \ldots, \vec{v}_{k}\right\}$ is lin. dep. After reordering the eigenvalues, we can find $z \leqslant m \leqslant k$ with $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m-1}\right\}$ linearly indep. But $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\} \ldots \operatorname{dep}$

Write the dependency related for $\left.3 \vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$ we go hum litold
(1) $a_{1} \vec{v}_{1}+\cdots+a_{m} \vec{v}_{m}=\vec{\Phi} \quad$ with $a_{m} \neq 0$

Multiply by A in the left, in both sides of F :

$$
\begin{aligned}
& A\left(a_{1} \vec{r}_{1}+\cdots+a_{m} \vec{r}_{m}\right)=A \overrightarrow{\mathbb{D}} \\
& a_{1} \underbrace{A \vec{v}_{1}}_{=\lambda_{1} \vec{v}_{1}}+\cdots+a_{m} \underbrace{A \vec{v}_{m}}_{=\lambda_{m} \vec{r}_{m}}=\overrightarrow{\mathbb{D}}
\end{aligned}
$$

(uscdistribution)
(2) $a_{1} \lambda_{1} \vec{v}_{1}+\cdots a_{m} \lambda_{m} \vec{v}_{m}=\overrightarrow{0}$

Next: compute (2) $-\lambda_{m}$ (1):

$$
\begin{array}{r}
a_{1} \lambda_{1} \vec{r}_{1}+a_{2} \lambda_{2} \vec{r}_{2}+\cdots+a_{m} \lambda_{m} \vec{r}_{m}=\overrightarrow{0} \\
a_{1} \lambda_{m} \vec{r}_{1}+a_{2} \lambda_{m} \vec{r}_{2}+\cdots+a_{m} \lambda_{m} \vec{r}_{m}=\overrightarrow{0} \\
\hline a_{1}\left(\lambda_{1}-\lambda_{m}\right) \vec{v}_{1}+a_{2}\left(\lambda_{2}-\lambda_{m}\right) \vec{v}_{2}+\cdots+\overrightarrow{0} \quad=\overrightarrow{0}
\end{array}
$$

(substract column by
crewmen)

We get: $\underbrace{a_{1}\left(\lambda_{1}-\lambda_{m}\right)}_{=b_{1}} \vec{v}_{1}+\underbrace{a_{2}\left(\lambda_{2}-\lambda_{m}\right)}_{=b_{2}} \vec{v}_{2}+\cdots+\underbrace{a_{m-1}\left(\lambda_{m-1}-\lambda_{m}\right)}_{=b_{m-1}} \overrightarrow{r_{m-1}}=\overrightarrow{0}$
But $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m-1}\right\}$ is li, so $b_{1}=b_{2}=\cdots=b_{m-1}=0$
Now $\lambda_{1}-\lambda_{m} \neq 0, \lambda_{2}-\lambda_{m} \neq 0, \ldots, \lambda_{m-1}-\lambda_{m} \neq 0$, so

$$
a_{1}=a_{2}=\cdots=a_{m-1}=0
$$

Looking back at (1), we get $\overrightarrow{0}+a_{m} \vec{v}_{m}=\overrightarrow{0}$ \& $\vec{r}_{m} \neq \overrightarrow{0}$, so $a_{m}=0$. This contradicts our assumption on $a_{m} \neq 0$.
Conclusion: S must be liriorly independent.
Consequence: Assume $\underset{n \times n}{A}$ is non-defective \& all its eigenvalues are real. Then A is diagnalizable.
Why? Collect all the eigenvalues of $A \quad 3 \lambda_{1}, \ldots, \lambda_{k}$)
\& write their algebraic multiplicities m, \ldots, m_{k}
Note: $m_{1}+\cdots+m_{k}=$ dengue of $P_{A}=n$
Pick $B_{1}=$ basis for $E_{\lambda_{1}}(A) \quad\left(m_{1}\right.$ elements since $\left.m_{1}=\operatorname{dm} E_{\lambda_{1}}(A)\right)$

$$
\begin{array}{cc}
B_{2}= & E_{\lambda_{2}}(A) \quad\left(m_{2}=\operatorname{dim} E_{\lambda_{2}}(A) \text { elements }\right) \\
\vdots & \vdots \\
B_{k}=-E_{\lambda_{k}}(A) \quad\left(m_{k}=\operatorname{dim} E_{\lambda_{k}}(A)-\right)
\end{array}
$$

Write $B=B_{1} \cup B_{2} \cup \cdots \cup B_{k} \quad\left(\right.$ raters in $\left.\mathbb{R}^{n}\right)$

- size of $B=m_{1}+m_{2}+\cdots+m_{k}=x$
- Claim ${ }^{(*)}$: B is linearly independent

Concede: B is a basis fr \mathbb{R}^{n}. All its elements ane eigenvectors
(x) Pool of Claim: Write

$$
\begin{aligned}
& B_{1}=\left\{\vec{v}_{1}^{(1)}, \ldots, \vec{v}_{m_{1}}^{(1)}\right\} \\
& \left.B_{2}=3 \vec{v}_{1}^{(2)}, \ldots, \vec{v}_{m_{2}}^{(2)}\right\} \\
& \left.B_{k}=3 \vec{v}_{1}^{(1)}, \ldots, \vec{v}_{v_{k}}^{(k)}\right\}
\end{aligned}
$$

\& consider a dependency relation fr the a n vectors

$$
\begin{array}{r}
\overrightarrow{\mathbb{D}}=\underbrace{\left(\vec{v}_{1} \text { in } S_{p}\left(B_{1}\right)=E_{\lambda_{1}}(A)\right.}_{\left(\vec{v}_{11}^{(1)}+\cdots+a_{1 m_{1}} \vec{r}_{m_{1}}^{(1)}\right)}+\underbrace{\left.a_{2}(2)+\cdots+a_{2 m_{2}} \vec{v}_{m_{2}}^{(2)}\right)}_{=\vec{v}_{2} m S_{p}\left(B_{2}\right)=\vec{v}_{\lambda_{2}}(A)}+\cdots+\underbrace{\left(a_{k)} \vec{v}_{1}+\cdots+a_{k m_{k}} \vec{v}_{m_{k}}\right)}_{\cdots \vec{v}_{k} \text { in } S_{p}\left(B_{k}\right)=E_{\lambda_{k}}(A)}
\end{array}
$$

So we get $\overrightarrow{0}=\vec{r}_{1}+\vec{v}_{2}+\cdots+\vec{v}_{k}$ and $\vec{v}_{1}, \ldots, \vec{v}_{k}$ ane eigenvectors io r different eigenvalues. By our Theremlabore, The sully way this ulatim holds is if $\vec{r}_{1}=\vec{r}_{2}=\cdots=\vec{r}_{k}=\overrightarrow{0}$

But now we get k defendingynelations, one for each basis B_{1}, \ldots, B_{k}

$$
\begin{aligned}
& \overrightarrow{0}=\vec{v}_{1}=a_{11} \vec{v}_{1}^{(1)}+\cdots+\vec{a}_{1 m_{1}} \vec{v}_{m_{1}}^{\prime \prime} \quad \text { ulatim fr } B_{1} \\
& \dot{\overrightarrow{0}}=\vec{v}_{k}=a_{k 1} \vec{v}_{1}^{((c)}+\cdots+a_{k m_{k}} \vec{v}_{m_{k}}^{(k)} \quad B_{k}
\end{aligned}
$$

Since B_{1}, \ldots, B_{k} are each l_{i}, we conclude all our coefficients $a_{11}, \ldots, a_{1 m_{1}}, a_{21}, \ldots, a_{k 1}, \ldots, a_{k m_{k}}$ are 0, so B is li.

Example: $\quad A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 1 & 3 & 1 \\ 1 & 3 & 1\end{array}\right] \quad E_{0}=\operatorname{Sp}\left(\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]\right), E_{2}=\operatorname{Sp}\left(\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]\right), E_{3}=\operatorname{Sp}\left(\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)\right.$ non-defective \& $\lambda=0,2,3$ eigenvalues
Thun $\left.B=3\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}$ is a basis (of eigenvectors) for \mathbb{R}^{3}. (we dort need to check it, eg ria a determinant amputation)

Special case: If $P_{A}(t)$ has distinct roots \& they an all real, then A is diagnalizable (oren \mathbb{R})
. We'll have a similar result oren the complex numbers, bt this requires talking about Mat $n_{n \times n}(\mathbb{C}) \mathbb{C}^{n}$, which will teatime in the next a lectures
\$2. (Real) Symmetric Matrices:
THEOREM z: Fix a symuntic matrix $A \quad\left(A^{\top}=A\right)$ of size $n \times n$. Then: $\rightarrow(1)$ A has only real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (possibly repeated!)
(2) R^{n} has an rthornormal basis B of eigenvectors fr A, that is, $\left.B=3 \vec{v}_{1}, \ldots, \vec{r}_{n}\right\}$ with $r_{i} \perp r_{j}$ if $i \neq j$ \& $\left\|v_{1}\right\|=\cdots=\| r_{n} \mid=1$
(3) $D=\left[\begin{array}{llll}\lambda_{1} & & \\ & \ddots & 0 \\ 0 & \ddots & \lambda_{n}\end{array}\right]=\begin{aligned} & \left.Q^{\top} A Q \quad \begin{array}{l}\text { with } Q=\left[\vec{v}_{1} \cdots\right. \\ \\ \\ \\ \\ \text { write }: \vec{v}_{n}\end{array}\right]\end{aligned}$
(Q is called an rithogenal matux)
Example: $\begin{aligned} A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=A^{\top} \quad P_{A}(t)=\operatorname{det}\left(\left[\begin{array}{cc}1-t & -1 \\ -1 & 1-t\end{array}\right]\right) & =(1-t)^{2}-1 \\ & =t(t-2)\end{aligned}$

$$
\begin{aligned}
& E_{0}=\mathcal{N}(A)=S_{p}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\operatorname{Sp}\left(\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]\right) \\
& E_{2}=\mathcal{N}\left(A-2 I_{2}\right)=\mathcal{N}\binom{-1-1}{-1-1}=\operatorname{Sp}\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=\operatorname{Sp}\left(\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]\right)
\end{aligned}
$$

$$
B=\left\{\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right],\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]\right\} \text { is an rithormal basis. } Q=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right], D=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]
$$

Q: Why is the Theorem True?

- To discuss (1) we need complex numbers a culex vector spaces \mathbb{C}^{n} This will be the topic of the next a lectures.
- Next: discuss (2) \& (3)

Idea: Write the mon-rupated eigenvalues : $\lambda_{1}, \ldots, \lambda_{k}$

- Claim: $E_{a_{i}}(A) \perp E_{\lambda_{j}}(A)$ fr $i \neq j$
(This is the main thing to show)
- Then, picking orthonormal basis B_{1}, \ldots, B_{k} fo each $E_{\lambda_{1}}\left(N, \ldots, E_{\lambda_{k}}(A)\right.$ will produce the basis B fr (2)
Proof of coin:
Note: $(A \vec{x}) \cdot \vec{y}=\vec{x} \cdot A \vec{y}$ if A is symuntic

$$
\left[(A \vec{x}) \cdot \vec{y}=(A \vec{x})^{\top} \vec{y}=\left(\vec{x}^{\top} A^{\top}\right) \vec{y}=\vec{x} \cdot\left(A^{\top} \vec{y}\right)=\vec{x} \cdot A \vec{y}\right]
$$

Now pick \vec{v} in $E_{\lambda_{1}}(A)$ \& \vec{u} in $E_{\lambda_{2}}(A)$. fr $\lambda_{1} \neq \lambda_{2}$ eigentakes
want to show $\vec{v} \cdot \vec{u}=0$

$$
\begin{aligned}
\lambda_{1}(\vec{v} \cdot \vec{u})=\lambda_{1} \vec{v} \cdot \vec{u}=A \vec{v} \cdot \vec{u}=\vec{\downarrow} \vec{v} \cdot A \vec{u} & =\vec{v} \cdot \lambda_{2} \vec{u} \\
& =\lambda_{2} \vec{v} \cdot \vec{u}
\end{aligned}
$$

$$
\text { so }{\underset{\neq 0}{\left(\lambda_{1}-\lambda_{2}\right)}}_{\neq 0}(\vec{v} \cdot \vec{u})=0 \quad \text { fores } \vec{v} \cdot \vec{u}=0
$$

Example: $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
adjacency matrix of G

$$
\begin{aligned}
& P_{A}(t)=\operatorname{det}\left(\left[\begin{array}{ccc}
-t & 1 & 1 \\
1 & -t & 1 \\
1 & 1 & -t
\end{array}\right]\right)=-\left(-\left(t^{2}-1\right)-1(-t-1)+1(1+t)\right. \\
& =-t^{3}+t+2 t+2=-\left(t^{3}-3 t-2\right)=-(t-2)\left(t^{2}+2 t+1\right)=-(t-2)(t+1)^{2}
\end{aligned}
$$

Eigenvalue n of A : 2 with mut 1 are real

$$
\begin{aligned}
& E_{2}=\mathcal{N}\left(A-2 I_{3}\right)=\mathcal{N}\left(\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right]\right)=S p\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \text { dim }=1 / \\
& E_{-1}=\mathcal{N}\left(A+I_{3}\right)=\mathcal{N}\left(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\right)=\operatorname{Sp}\left(\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right) \operatorname{dim}=2 ل
\end{aligned}
$$

A is mon-ifective a all riganalues ane real, to it's diagsralizable

- In particula $B=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis of rigenkectors rigenvalues $2-1$

So $\quad S^{-1} A S=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$ with $S=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$

- Nite: $E_{2} \perp E_{-1}$ but B is not orthorgaal because $\left[\begin{array}{c}-1 \\ 1\end{array}\right] \notin\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. To get an rithnormal ban's we can une Gram-Schmidt on ou basis $\left\{\begin{array}{c}-1 \\ 1 \\ 1 \\ \vec{u}_{1}\end{array}\right]\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 1 \\ \vec{u}_{2}\end{array}\right\}$ of E_{-1}.
Gnamidt: $\vec{w}_{1}=\vec{u}_{1}, \quad \vec{w}_{2}=\vec{u}_{2}-\frac{\vec{u}_{2} \cdot \vec{w}_{1}}{\vec{w}_{1} \cdot \vec{w}_{1}} \vec{w}_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]-\frac{(-1)^{2}}{2}\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$
$m \rightarrow$ Onthognal basis $\mid>E_{-1}=\left\{\vec{\omega}_{1}, \vec{\omega}_{2}\right\}$

$$
=\left[\begin{array}{c}
-1 / 2 \\
-1 / 2 \\
1
\end{array}\right]=2\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right]
$$

\rightarrow Our orthonormal basis for^{3} of eigurectors of A is:

$$
B=\left\{\left[\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3} \\
2
\end{array}, \underset{-1}{2}, \begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right],\left[\begin{array}{c}
-1 / \sqrt{6} \\
-1 / 1 / \sqrt{6} \\
2 / \sqrt{6}
\end{array}\right]\right\}
$$

Now: $\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]=Q^{-1} A Q Q^{-1}$ with $Q=\left[\begin{array}{ccc}1 / \sqrt{3} & -1 / \sqrt{2} & -1 / \sqrt{6} \\ 1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6} \\ 1 / \sqrt{3} & 0 & 2 / \sqrt{6}\end{array}\right]$
Compare with (*): $Q^{-1}=Q^{\top}$ comes for hee, but S^{-1} nerds to be compatid!

Obsunatims: Fr eack $l>0,(i, j)$-untry of A^{l} is the nember if paths of length l between wode is wode j.

- A^{ℓ} is easey to compute because A is diagualizable $\left(A^{l}=Q\left[\begin{array}{cc}2^{l} \\ 0^{(-1)^{0}}(-1)^{l}\end{array}\right] \Phi^{\top}\right)$

