Lecture $X X X V 1: ~ § 4.6$ Cumplex vectre spacs, complex rigenvalues
Last time: Defined complex wembers $z=a+i b \quad a=\operatorname{Re}(z), b=\operatorname{Im}(z)$ in \mathbb{I}

$$
\begin{aligned}
& \cdot(a+i b)+(c+i d)=(a+c)+i(b+d) \\
& -(a+i b) \cdot(c+i d)=(a c-b d)+i(a d+b c) \quad \text { and } i^{2}=-1
\end{aligned}
$$

- Complex conjugation $\overline{a+i b}=a+i(-b)=a-i b$
(1) $\overline{z+\omega}=\bar{z}+\bar{\omega}$
(2) $\bar{z} \bar{\omega}=\bar{z} \cdot \bar{\omega}$
- Modulues: $|a+i b|=\sqrt{a^{2}+b^{2}}$

$$
\text { . } z \bar{z}=|z|^{2} \text {, so if } z \neq 0 \text {, then } z^{-1}=\frac{\bar{z}}{|z|}
$$

Fundamental Thun f| Alfebsea: A deque n plysumial in $\mathbb{C}[x]$ has exactly n noots in \mathbb{C} (crunted woth multeplicity)
Special cose: If f in $\mathbb{R}[x]$, its noots ame in 2 types:
(i) mal noots
(2) won-nal wots cme in conjugate pains $(\alpha, \bar{\alpha})$.

Example:

$$
\begin{aligned}
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 3 & 1 \\
0 & -2 & 1
\end{array}\right] \text { m } P_{A}(t) & =\operatorname{det}\left(A-t I_{3}\right)=\operatorname{det}\left(\left[\begin{array}{ccc}
1-t & 0 & 0 \\
0 & 3 & 1 \\
0 & -2 & 1-t
\end{array}\right]\right) \\
& =(1-t)((3-t)(1-t)+2) \\
& =(1-t)\left(t^{2}-4 t+5\right)
\end{aligned}
$$

Roots: $\frac{-(-4) \pm \sqrt{4^{2}-4.5}}{2}=\frac{4 \pm \sqrt{-4}}{2}=\frac{4 \pm 2 \sqrt{-1}}{2}=2 \pm i \int_{2-i}^{2+i}$ cmpubusate
Eigenspaces for $2+i$ \& $2-i$? They will be in \mathbb{C}^{3}
§1. Vectrs in \mathbb{C}^{n}
The ideas \& algouthus we deseloped For^{n} will translate dinctly to $\mathbb{C}^{\prime \prime}$. Def: $\vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ in \mathbb{C}^{n} means $v_{1}, v_{2}, \ldots, v_{n}$ in \mathbb{C}

- Addition: entry-by-entry
- Scaler multiplication: scalars ane wow in C \& we operate entry-by-entry

Example: $\vec{v}=\left[\begin{array}{l}1 \\ i\end{array}\right], \vec{\omega}=\left[\begin{array}{c}2+i \\ 4-i\end{array}\right] \Rightarrow \vec{v}+\omega=\left[\begin{array}{c}1+(2+i) \\ i+(4-i)\end{array}\right]=\left[\begin{array}{c}3+i \\ 4\end{array}\right]$ $i \vec{v}=\left[\begin{array}{c}i \\ i^{2}\end{array}\right]=\left[\begin{array}{c}i \\ -1\end{array}\right]$
$\$ Dot Product on \mathbb{Q}^{n} needs to be modified hum \mathbb{R}^{n} one.

$$
\vec{v} \cdot \vec{\omega}=\bar{v}_{1} \cdot w_{1}+\bar{v}_{2} \cdot w_{2}+\cdots+\overline{v_{n}} \cdot w_{n}=\overline{\vec{\omega} \cdot \vec{v}} \quad \text { (not symumtic!.) }
$$

Example: $\vec{v}=\left[\begin{array}{l}1 \\ i\end{array}\right] \quad \vec{\omega}=\left[\begin{array}{c}2+i \\ 4-i\end{array}\right]$

$$
\begin{aligned}
& \vec{v} \cdot \vec{\omega}=T(2+i)+\bar{i}(4-i)=(2+i)-i(4-i)=2+i-4 i-1=1-i 3 \\
& \vec{\omega} \cdot \vec{v}=\overline{2+i} \cdot 1+\overline{(4-i)} \cdot i=2-i+(4+i) i=2-i+4 i-1=1+i 3
\end{aligned}
$$

Q: Why this primula?
A: We want $\vec{v} \cdot \vec{v}=|\vec{v}|^{2}$ to be a men-negatiere real member e \& the fromila fur e \mathbb{C}^{n} ustricted to \mathbb{R}^{n} should agree with the id d one.

$$
|\vec{v}|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{\bar{v}_{1} \cdot v_{1}+\bar{v}_{2} \cdot v_{2}+\cdots+\bar{v}_{n} \cdot v_{n}}=\frac{\sqrt{\left|v_{1}\right|^{2}+\cdots+\left|v_{n}\right|^{2}}}{\geqslant 0}
$$

- THEOREM \mathbb{C}^{n} with this addition a scalar multiplication is a rector space $\operatorname{ren} \mathbb{C}$. It satisfies the same 10 properties defining \mathbb{R}^{n} as , rector space but now using scalars in \mathbb{C} (see (ectere 14)
- Same ideas from \mathbb{R}^{n} allow is to define
(1) Subspaces of \mathbb{C}^{n} : Sets \mathbb{V} satisfying 3 properties:
(Si) $\overrightarrow{\mathbb{D}}=\left[\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right]$ is in \mathbb{V}
(52) If \vec{u}, \vec{v} are in \mathbb{N}, then so is $\vec{u}+\vec{v}$
(53) If \vec{u} is in \mathbb{V} a a is in \mathbb{C}, then $a \vec{u}$ is in \mathbb{V}.
(2). $S_{p_{\mathbb{C}}}\left(\vec{v}_{1}, \ldots, \vec{v}_{p}\right)=$ all \mathbb{C} - linear combinations of $\vec{v}_{1}, \ldots, \vec{v}_{p}$ (Prototype of asudspace) $=\left\{a_{1} \vec{v}_{1}+\cdots+a_{p} \vec{v}_{p}: a_{1}, \ldots, a_{p}\right.$ in $\left.\mathbb{C}\right\}$
- $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ spans \mathbb{N} if $\mathbb{V}=S_{p_{c}}\left(\vec{v}_{1}, \ldots, \vec{v}_{p}\right)$
(3) © - linear independence: $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ are $l \cdot i$ if

$$
a_{1} \vec{v}_{1}+\cdots+a_{p} \vec{v}_{p}=\vec{\Phi}
$$

has only 1 solution in a_{1}, \ldots, a_{p}, nomully $a_{1}=a_{2}=\cdots=a_{p}=0$ Solve the system with matixx $\left[\begin{array}{lll|c}\vec{v}_{1} & \ldots & \vec{v}_{n} & 0 \\ \vdots \\ \vdots\end{array}\right]$. This augmented matin has entries in $\mathbb{C}!$ Gauss-Jrdan works verbatim but wow we, operate with complex numbers.
(4) Bases: $\left.B=3 \vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a basis for a subspace \mathbb{V} of \mathbb{C}^{n} if B spans $\mathbb{W} \& B$ is limcolly indie $\rightarrow m, \# B=\operatorname{dim}_{\mathbb{C}} \mathbb{V}$.
\$2. Abstract Vector Spaces oe C:

- They are defined using the same 8 properties, but now we use scalars in C. There are 2 main examples:
(1) Mat $_{m \times n}(\mathbb{C})=m \times n$ matrices with entries in \mathbb{C}

Addition: eutry-by. entry, Scalar Mut $=$ entry -by -entry
(1) = zero mater of size $m \times u$

Example: $\left[\begin{array}{cc}i & 1 \\ -1 & 3\end{array}\right]+\left[\begin{array}{ll}0 & 1 \\ i & 4\end{array}\right]=\left[\begin{array}{cc}i & 2 \\ -1+i & 7\end{array}\right]$

$$
i\left[\begin{array}{cc}
i & 1 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{ll}
-1 & i \\
-i & 3 i
\end{array}\right]
$$

Basis $=\left\{E_{11}, \ldots, E_{m n}\right\} \quad$ (same as for $\operatorname{Mat}_{m \times n}(\mathbb{R})$)
(2) $P_{n}(\mathbb{C})=\left\{P(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}: a_{0}, a_{1}, \ldots, a_{n}\right.$ in $\left.\mathbb{C}\right\}$

Usual fromulas for addition a scalar multiplication (teem-sy.Term)
Example: $(1+i x)+\left(2-2 i x^{2}\right)=2+i x-2 i x^{2} ; \quad i(1+i x)=i-x$
Basis $=\left\{1, x, x^{2}, \ldots, x^{n}\right\} \quad\left(\right.$ same as for $\left.P_{n}=\beta_{n}(\mathbb{R})\right)$
§3 Eigenvectors in \mathbb{C}^{n} :
Pick $A=n \times n$ wativx with real entries \& λ in \mathbb{C} ar eigenvalue
(ie $P_{A}(\lambda)=0$). Then:

$$
E_{\lambda}:=\left\{\vec{v} \text { in } \mathbb{C}^{n}: A \vec{v}=\lambda \vec{v}\right\}=\mathcal{N}\left(A-\lambda I_{n}\right) \text { is a subspace of } \mathbb{C}^{n} \text {. }
$$

Key: If λ in \mathbb{R}, the E_{λ} has a basis with all rectors in \mathbb{R}^{n}, so

$$
\operatorname{dim}_{\mathbb{R}}(\underbrace{E_{\lambda} \cap \mathbb{R}^{n}}_{\text {old eigenspace }})=\operatorname{dim}_{\mathbb{C}} E_{\lambda}
$$

(we an allowing mare scalars, but the dimension dresn't change!)

Q: How to find $\mathcal{N}\left(A-\lambda I_{n}\right)$?
A. Use Gauss.Jrdon to put $A-\lambda I_{n}$ in $R E \mp$ allowing scalars in \mathbb{C}.

Example: $A=\left[\begin{array}{cc}3 & 1 \\ -2 & 1\end{array}\right] \quad P_{A}(t)=\operatorname{det}\left[\begin{array}{cc}3-t & 1 \\ -2 & 1-t\end{array}\right]=t^{2}-4 t+5$
Roots: $\frac{-(-4) \pm \sqrt{16-4.5}}{2}=\frac{4 \pm \sqrt{-4}}{2}=\frac{4 \pm 2 \sqrt{-1}}{2}=2 \pm i$

$$
\begin{aligned}
& E_{2+i}=\mathcal{N}\left(A-(2+i) I_{2}\right)=W\left(\left[\begin{array}{cc}
3-(2+i) & 1 \\
-2 & 1-(2+i)
\end{array}\right]\right) \\
&=\mathcal{N}\left(\left[\begin{array}{cc}
1-i & 1 \\
-2 & -1-i
\end{array}\right]\right) \quad|1-i|^{2}=2 \\
& {\left[\begin{array}{cc}
1-i & 1 \\
-2 & -1-i
\end{array}\right] \underset{R_{2} \rightarrow R_{2}+(1-i) R_{1}}{ }\left[\begin{array}{cc}
1-i & 1 \\
0 & 0
\end{array}\right] \quad(1-i) x+y=0 \quad\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1 \\
1-i
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
E_{2+i} & =S_{p}\left(\left[\begin{array}{c}
1 \\
1-i
\end{array}\right]\right) \\
E_{2-i} & =\mathcal{N}\left(A-(2-i) I_{2}\right)=\mathcal{N}\left(\left[\begin{array}{cc}
3-(2-i) & 1 \\
-2 & 1-(2-i)
\end{array}\right]\right) \\
& =\mathcal{N}\left(\left[\begin{array}{cc}
1+i & 1 \\
-2 & 1+i
\end{array}\right]\right)
\end{aligned}
$$

- complex anjugate of the other maters!

$$
\left[\begin{array}{cc}
1+i & 1 \\
-2 & 1+i
\end{array}\right] \xrightarrow[R_{2} \rightarrow R_{2}+(1-i) R_{1}]{ }\left[\begin{array}{cc}
1+i & 1 \\
0 & 0
\end{array}\right] \quad(1+i) x+y=0 \quad\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1 \\
1+i
\end{array}\right]
$$

So $E_{2-i}=S_{p}\left(\left[\begin{array}{c}1 \\ 1+i\end{array}\right]\right)$
Observation: $\vec{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ in E_{2+i}, then $\overrightarrow{\vec{v}}=\left[\begin{array}{l}\vec{v}_{1} \\ \bar{v}_{2}\end{array}\right]$ in $E_{2+i}=E_{2-i}$
This is tue whenever A has REAL entries.
Advantage, E_{2-i} comus for be once we compute E_{2+i}.
RULE: If A n xu matrix has real entries and $\lambda, \bar{\lambda}$ are complex wo tb of $P_{A}(t)$ (recall not of real prlynnonials cone in conjugate pairs!) then
$B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a basis $f s E_{\lambda}$ if, and ml if,

$$
\bar{B}=\left\{\overline{\vec{v}_{1}}, \ldots, \overline{\vec{v}_{p}}\right\} \quad E_{\bar{\lambda}}
$$

Why? If $A \vec{v}=\lambda \vec{v}$, then $\overrightarrow{A \vec{r}}=\overrightarrow{\lambda \vec{v}}$, so $\overrightarrow{\vec{v}}$ is in $\vec{E}_{\bar{\lambda}}$.

$$
\vec{r} \neq \vec{D} \quad A \overline{\vec{r}}=\bar{A} \overline{\vec{r}} \equiv \bar{\lambda} \overline{\vec{v}}
$$

Conclude: Once we curpute B, computing \bar{B} is rend easy!
Example z: $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

$$
\begin{aligned}
P_{A(t)}=\operatorname{det}\left[\begin{array}{cc}
-t & 1 \\
-1 & -t
\end{array}\right] & =t^{2}+1 \\
& =(t-i)(t+i)
\end{aligned}
$$

Eigenvalues: $i s-i$, each with algebraic multiplicity 1.

$$
\begin{aligned}
& E_{i}=N\left(A-i I_{2}\right)=\mathcal{N}\left(\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right]\right)=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right] \begin{array}{c}
-i x+y=0 \\
-x-i y=0
\end{array}\right\} \\
& 1^{s t} \operatorname{eq\mu }=i\left(2^{u-i} \text { qu }\right) \quad \text { so solus }\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
-i x
\end{array}\right]=x\left[\begin{array}{c}
1 \\
-i
\end{array}\right] \\
& E_{i}=\operatorname{Sp}\left(\left[\begin{array}{c}
1 \\
-i
\end{array}\right]\right) \sim E_{-i}=\operatorname{Sp}\left(\left[\begin{array}{c}
1 \\
-i
\end{array}\right]\right)=\operatorname{Sp}\left(\left[\begin{array}{l}
1 \\
i
\end{array}\right]\right)
\end{aligned}
$$

germ molt fo is-i is 1
Conclude: A is nm-defectire \& eigenvalues are in \mathbb{C}.
, A is diagmalizable seen \mathbb{C}, but not over \mathbb{R} !

$$
\begin{array}{rll}
S^{-1} A S=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \quad \text { with } S & =\left[\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right] & \text { dit } S=2 i \\
S^{-1} & =\frac{1}{2 i}\left[\begin{array}{cc}
i & -1 \\
i & 1
\end{array}\right] & \begin{array}{l}
\text { (same pule } \\
\text { with real as }
\end{array} \\
& &
\end{array}
$$

Consequence If A is mat symmetric, then all eigenvalues are real.
Why? Pick λ in \mathbb{C} nose of $P_{A}(t)$ \& \vec{r} in $\mathbb{C}^{n}, \vec{v} \neq \vec{\Phi}$ with $A \vec{r}=\lambda \vec{r}$. - Take $A \vec{r}=\lambda \vec{r}$ \& multiply each side by \vec{r}^{T}.

$$
\vec{v}^{\top} A \vec{v}=\vec{v}^{\top} \lambda \vec{v}=\lambda \vec{v}^{\top} \vec{v}=\lambda\|\vec{v}\|^{2} \text { (1) }
$$

But $\overrightarrow{\vec{v}}^{\top} A \vec{v}=\overline{\vec{v}}^{\top}(\lambda \vec{v})=\left[\bar{v}_{1}, \ldots . \overline{v_{n}}\right]\left[\begin{array}{c}\lambda v_{1} \\ \vdots \\ \lambda v_{n}\end{array}\right]=\left[\lambda v_{1} \ldots \ldots \lambda v_{n}\right]\left[\begin{array}{c}\bar{v}_{1} \\ \vdots \\ \frac{v_{n}}{v_{n}}\end{array}\right]=$

$$
\begin{aligned}
&(\lambda \vec{v})^{\top} \overrightarrow{\vec{v}}=(A \vec{v})^{\top} \overrightarrow{\vec{v}}=\vec{v}^{\top} A^{\top} \overrightarrow{\vec{v}}=\vec{v}^{\top} A \overrightarrow{\vec{v}}=\vec{v}^{\top} \bar{\lambda} \overline{\vec{v}}=\bar{\lambda}\left[v_{i} \cdots v_{n}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
\frac{v_{n}}{n}
\end{array}\right] \\
&=\bar{\lambda} \vec{v}^{\top} \overrightarrow{\vec{v}}=\bar{\lambda}\|\vec{v}\|^{2} \\
& \text { (2) }
\end{aligned}
$$

Compare (1) \& (2) to get $\lambda \underbrace{\|\vec{v}\|^{2}}_{\neq 0}=\bar{\lambda} \underbrace{\|\vec{r}\|^{2}}_{\neq 0}$, ie $\lambda=\bar{\lambda}$, maxing λ in \mathbb{R}.

