SOLUTIONS

Midterm 1 Math 2568 - Linear Algebra (Section 75)

Prof. Cueto

Friday Feb. 3rd 2017

- The use of class notes, book, formulae sheet or calculator is **not permitted**.
- In order to get full credit, you must:
 - a) get the correct answer, and
 - b) show all your work and/or explain the reasoning that leads to that answer.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.
- Please make sure the solutions you hand in are legible and lucid.
- You have fifty-five minutes to complete the exam.
- Do not forget to write your full name (in PRINT) in the space provided below and on the bottom of the last page.

Full Name	(Print):	
-----------	----------	--

Good luck!

Exercise 1. [12 points] Consider the systems of linear equations (with parameter a):

$$\begin{cases} x_1 & + & x_2 & = & 2 \\ x_1 & - & x_2 & = & 0 \\ 2x_1 & - & x_2 & + (a^2 - a - 2)x_3 & = & a^2 + 2a - 7 \end{cases}$$

a) [4 points] For what values of a does the system have infinitely many solutions?

Factor:
$$\begin{cases} a^2-a-2 = (a+1)(a-2) \\ a^2+2a-8 = (a+4)(a-2) \end{cases}$$

It a = 2], the can becomes 0. X3 = 0 so infinitely many And it is the my can when this hattens.

b) [4 points] For what values of a does the system have no solutions?

0.x3 = -9 , so no sola If a = 1, the can be comes For any other valen of a the system has solution

c) [4 points] For what values of a do we have a solution with satisfying $x_3 = 0$? Is this the only solution with this property?

I a + 2, -1, the system has a unique solution $x_1 = x_2 = 1$, $x_3 = \frac{a+4}{a+1}$

This value becomes 0 When | a = -4]

If [a=2], then x3 even be anything but there is only one solution with $x_3 = 0$ $(x_1 = x_2 = 1)$

A never = [a = 2, -4] In both cases rit is the only

Exercise 2. [12 points]

Consider the matrix
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 2 & -1 & 1 \\ -3 & 1 & -3 \end{bmatrix}$$
 and the vector $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

a) [6 points] Determine conditions on b for which the system $A \mathbf{x} = \mathbf{b}$ has no solutions.

$$\begin{bmatrix} 1 & -1 & -1 & b_1 \\ 2 & -1 & 1 & b_2 \\ -3 & 1 & -3 & b_3 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{bmatrix} 0 & 1 & 3 & b_2 - 2b_1 \\ 0 & -2 & -6 & b_3 + 3b_1 \end{bmatrix}$$

$$\xrightarrow{R_3 \to R_2 + 2R_2} \begin{bmatrix} 1 & -1 & -1 & b_1 \\ 0 & 1 & 3 & b_2 - 2b_1 \\ 0 & 0 & 0 & b_3 + 3b_1 + 2(b_2 - 2b_1) \end{bmatrix}$$
So the system is in consistent if and why if $b_3 + 3b_1 + 2b_2 - 4b_1 = \begin{bmatrix} -b_1 + 2b_2 + b_3 \neq 0 \end{bmatrix}$

b) [3 points] Write the vector form of the general solution of the system $A\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

We use [4]: [A]: $\begin{bmatrix} A \end{bmatrix}$ so we know the System has no solution.

c) [3 points] Are the columns of A linearly independent? Justify your answer.

Since we found a vojen of b giving an inconsistent system, we know A cannot be insertable, in recticular it is simpler & its columns are linearly dependent

Exercise 3. [10 points]

a) [3 points] Assume P,Q and R are nonsingular square matrices with $PQR = I_n$. Express Q^{-1} in terms of P and R.

They are insutelle as by the algebraic properties of metrics multiplication we get P'(PQR) R" = P'In R" = P-1 R-1

I meet: Q-' = (P-' 2-') = | R P |

b) [4 points] Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$. Calculate ABA, BAB and $-2((AB)^3)^T$.

$$AB = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$$

$$ABA = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$(AB)^{2} = (ABA)(BAB) = [0][0][0] = [0] = -I_{2}$$

$$So -2((An)^3)^T = -2(-I_2)^T = 2I_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

c) [3 points] Let $A = \begin{bmatrix} 1 & 3 & 5 \\ 0 & 1 & 4 \\ 0 & 2 & 9 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}$. Compute $||A^{-1}\mathbf{u}||$.

$$\begin{bmatrix}
1 & 3 & 5 & | & 1 & 0 & 0 \\
0 & 1 & 4 & | & 0 & 1 & 0 \\
0 & 2 & 9 & | & 0 & 0 & |
\end{bmatrix}
\xrightarrow{R_3 \sim R_3 - 2R_2}
\begin{bmatrix}
1 & 3 & 5 & | & 1 & 0 & 0 \\
0 & 1 & 4 & | & 0 & 1 & 0 \\
0 & 0 & 1 & | & 0 & -2 & 1
\end{bmatrix}$$

$$A^{-1} \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$$

$$A^{-1} \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$$
 so $||A^{-1}u|| = \sqrt{4+16+1} = |\overline{|21|}$

Exercise 4. [12 points]

b) [6 points] A matrix A is called *idempotent* if $A^2 = A$. Show that if an idempotent matrix A is nonsingular then A must be the Identity matrix.

$$A^2 = A$$
 so $A^2 - A = A(A - I_n) = 0$
If A is insertible, then multiply by A^{-1} .
 $A^{-1}A(A - I_n) = A^{-1}o$
 $I_n(A - I_n) = 0$
 $A - I_n = 0$
 $A = I_n$

Exercise 5. [14 points]

Determine whether each of the statements is True or False. No justification is necessary.

- a) True False If an $m \times n$ system is inconsistent, then the reduced echelon form of the augmented matrix must have n+1 nonzero rows.
- b) True False If a square matrix A can be reduced to the identity matrix by elementary row operations, then A is invertible.
- c) True False A linear system with less equations than variables cannot have a unique solution.
- d) True False Two linear systems are equivalent if they have the same solutions set.
- e) True False Applying elementary row operations on an augmented matrix can change the solutions set of the associated linear system.
- f) True False A homogeneous system of equations can be inconsistent.
- g) True False A consistent 3×2 system of linear equations can have exactly two solutions.

For Grader's use only:

1 2			3 4			1	5							TOTAL				
a	b	С	a	b	c	a	b	С	a	b	a	b	С	d	е	f	g	