Homework 6 - Math 2568 (Spring 2020) Prof. Cueto

Due date: Wednesday February 19th, 2020 (in class).

The sections and problem numbers refer to the course's textbook (L.W. Johnson, R.D. Riess, J.T. Arnold: Introduction to Linear Algebra, 5th edition, Pearson.)

Section	Assigned Problems	Problems to be turned in
$\S 3.2$	$1,6,7,8,9,17,18,19,29,30,31$	$6,9,18,30,31$
$\S 3.3$	$1,11,15,17,21,23,27,35,37,45$	$11,21,27,35,45$
$\S 3.4$	$1,9,11,16,17,23,25,29,33,36$	$1,11,17,23,29$

Extra Problem: Consider the following three vectors in \mathbb{R}^{4} :

$$
\mathbf{u}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
3 \\
4 \\
-2 \\
5
\end{array}\right] \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{l}
1 \\
4 \\
0 \\
9
\end{array}\right] .
$$

Find a system of homogeneous linear equations for which the space of solutions is exactly the subspace of \mathbb{R}^{4} spanned by the three vectors. What happens if we wish to do this for each of the above vectors?

