
STUDY GUIDE FOR THE FINAL EXAM OF MATH 2568
SPRING 2020 - PROF. CUETO

The final exam is cummulative and will cover basic topics on Linear algebra. Topic 1
was covered for Midterm 1, Midterm 2 material included Topics 2–4. The rest of the topics
were taught after Spring Break (in online fashion).

The following is a cheat sheet containing the main results in each topic, with references
and where to find them.

Topic 1. Matrices and linear systems of equations.

(1) Special matrices: echelon form, reduced echelon form (Lecture 2), identity matrix,
zero matrix.

(2) Algorithm to solve linear systems Ax = b: apply Gauss-Jordan elimination of the
matrix (A|b) and write the general form of a solution using independent variables.
(Lectures 2 and 3)

(3) Three scenarios: no solutions, exactly one solution or infinitely many solutions (num-
ber of free parameters = number of independent variables = number of columns of
A - rank of the matrix A). (Lecture 4)

(4) Homogeneous vs inhomogeneous systems: b = 0 or not. Homogeneous systems
always have solutions, e.g. the trivial solution x1 = . . . = xn = 0. (Lecture 5)

(5) Operations on matrices and their algebraic properties: addition, scalar multiplication,
multiplication of matrices (for AB, need number of columns of A = number of rows
of B), transposition. (Lectures 6 and 7)

(6) Computing inverses of square matrices: start from (A|Id) and do Gauss-Jordan elim-
ination to get (A′|B). Then A is invertible if and only if A′ = Id. Moreover, in that
situation, A−1 = B. Special formula for 2× 2 matrices (Lecture 8).

(7) Algebraic Properties of inverses: inverses of products and transposes (Lecture 8)
(8) Alternative characterization of invertible square matrices: (i) det(A) 6= 0; (ii) columns

are linearly independent; (iii) all systems Ax = b have unique solutions; (iv) A is
non-singular (its NullSpace is {0}). ((i) is in Lecture 29 §5, the rest is in Lecture 9)

Topic 2. Geometry of vectors in R2 and R3, lines and planes, the dot and cross
products

(1) Magnitude and direction of vectors, addition and scalar multiplication of vectors;
Triangle and Parallelogram Laws for addition (Lecture 10)

(2) Algebraic Properties of dot product; |u · v| = |u||v| cos(θ); the projection of a vector
u along another non-zero vector v equals projv u = u·v

|v|2v. (Lecture 11)

(3) Determinantal formula for cross product in R3; |u × v| = |u||v| sin(θ); Algebraic
properties of the cross products, u× v ⊥ u and u× v ⊥ v. (Lectures 11-12)

(4) Parametric and vector equations for lines (and segments) in R2 and R3 (Lecture 12)
(5) The equation η·(x−x0, y−y0, z−z0) = 0 for planes in R3 using a point P = (x0, y0, z0)

in the plane and the normal direction η = v × w, where v,w are the independent
directions defining the plane. Formula to determine when four points P,Q,R, S in
R3 are coplanar: |(P −Q) · ((R−Q)× (S −Q)| = 0. (Lecture 13)
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Topic 3. The vector space Rn: subspaces, spanning sets, linear independence,
bases of subspaces

(1) 10 properties characterizing the vector space R4, including the role of the zero vector
0 as a neutral element for addition, and −v = (−1)v as an additive inverse for v.
(Lecture 14)

(2) 3 properties for determining subspaces of R4. Main examples: {0}, Rn, spanning
of a finite number of vectors, solutions to homogeneous systems of equations in n
variables, NullSpace of a matrix, Row Space of a matrix and Range = Column Space
of a matrix. (Lecture 14-15)

(3) Definition of Linear independence and a spanning set (Lecture 15)
(4) Row space of a matrix is preserved under row operations, but NOT the column space.

(Lecture 15)
(5) Definition of basis for a subspace V of Rn; 2 algorithms to build a basis of a subspace

from a spanning set; coordinates of a vector in V with respect to a fixed basis for V.
(Lecture 15-16)

(6) The dimension of a subspace V as the size of any basis for it. Important consequences:
(i) a spanning set of size dim(V) is automatically a basis for V; (ii) a linearly inde-
pendent set inside V of size dim(V) is automatically a basis for V; (iii) a subspace
V of Rn of dimension n must equal Rn; (iv) two subspaces of the same dimension
with one contained in the other are automatically equal. (Lecture 17)

(7) Definition of the nullity and rank of an m×n matrix; Property: rank(A) = rank(AT );
The rank-nullity theorem: rank(A) + nullity(A) = n. (Lecture 17).

(8) Orthogonal basis for subspaces of Rn via Gram-Schmidt method. For orthonormal
basis: adjust the output of GS by dividing each vector by its magnitude (Lecture 18)

Topic 4. Abstract vector spaces: subspaces, spanning sets, linear independence,
basis, coordinates with respect to a basis

(1) 10 properties characterizing an abtract vector space W with addition and scalar
multiplication, including the role of the zero vector 0 as the unique neutral element
for addition, and −v = (−1)v as the unique additive inverse for v. (Lecture 19)

(2) Main examples: Rn, the space Matn×m of n×m matrices, the space Pn of polynomials
of degree ≤ n, the space C[a,b] of continuous functions on [a, b]. (Lecture 19)

(3) 3 properties for determining subspaces of W. Main Examples: sets of vectors in
the spaces from (2) subject to homogeneous linear constraints; spanning of a finite
number of vectors in W. (Lecture 20)

(4) Linear independence for vectors in W and methods to determine l.i. from a de-
pendency relation: (i) for matrices, solve a linear system (one for each entry of the
matrix computed from the relation); (ii) for polynomials or functions, evaluate f
(and derivatives) at various x to obtain linear constraints of the scalars. (Lecture 21)

(5) Definition of basis for W; algorithm to build basis from a spanning set (use linear
dependencies to remove redundant vectors). Favorite examples: E = {e1, . . . , en} for
Rn, {E11, E12, . . . , Emn} for Matm×n, {1, x, x2, . . . , xn} for Pn (Lecture 21)

(6) Use coordinates [ ]B with respect to a fixed basis B for W to fast determine if a set is
a spanning set/l.i./basis: just check the statement for the coordinates of the vectors
and use the standard tricks from Rn where n = dim(W). Using this we have the
same 4 consequences from (6) in Topic 3. (Lecture 22)
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Topic 5. Linear transformations between (abstract) vector spaces

(1) Definition: a map T : Rn → Rm that interacts well with addition and scalar multipli-
cation. So it satisfies (i) T (u+v) = T (u)+T (v), and (ii) T (αv) = αT (v) for all u,v
and α. Linear transformations are completely determined by assigning any vectors
w1, . . . ,wn in Rm to a basis B = {v, . . . ,vn} of Rn. If B is the standard basis of Rn

then T (v) = Av where A is the m× n matrix A = [T (e1), . . . T (en)]. (Lecture 23)
(2) Matrix representations of linear transformations T : Rn → Rm: pick a basis B =
{v1, . . . ,vn} and write [T ]B = [T (v1), . . . , T (vn)]. Then: T (v) = [T ]B[v]B (just
multiply the matrix [T ]B by the coordinates of v with respect to the basis B.) Special
case: if we pick standard basis E = {e1, . . . , en} for Rn, then [T ]E is the matrix A
from (1). (Lecture 24)

(3) The Null Space and Range of T can be computed from any matrix representation
[T ]B; Rank-Nullity theorem for T : dim(NullSpace(T )) + dim(Range(T )) = n, and it
agrees with the rank-nullity theorem for the matrix [T ]B. (Lecture 23).

(4) Linear transformations between abstract vector spaces V and V′: choosing coordi-
nates with respect to two basis (B for V and B′ for V′) identifies T : V → V′ with
a linear transformation T̃ : Rdim(V) → Rdim(V′). More precisely: [T (v)]B′ = T̃ ([v]B).
Matrix representation for T : [T ]B,B′ = [[T (v1)]B′ , . . . , [T (v1)]B′ ], i.e. columns are
coordinates w.r.t. B′ for the image of each vector vi in B (Lectures 24 and 27)

(5) A linear transformation T : V→ V′ is:
(i) injective if and only if NullSpace(T ) = {0V}.

(ii) surjective if and only if Range(T ) = Sp(B) = V′ for any basis B for V (enough
to check they have the same dimension; we get dim(Range(T )) from the Rank-
Nullity Theorem on (3)).

(iii) invertible (meaning injective and surjective) if [T ]B,B′ is invertible for any choice
of bases B for V and B′ for V′. If so, [T−1]B′,B = ([T ]B,B′)−1.

Rank Nullity theorem for T says dim(NullSpace(T )) + dim(Range(T )) = dim(V′).
(Lecture 25 and 26)

(6) Operations on linear transformations: addition, scalar multiplication, compositions.
This can all be seen on the matrix representations (table on page 1 of Lecture 26,
and pages 6-8 of Lecture 27). In particular, for compositions of F : V → V′ and
G : V′ → W we get [G ◦ F ]B,B′ = [G]B′,B′′ [F ]B,B′ for any choice of bases B,B′ and
B′′ for V,V′ and W.
Properties: NullSpace(F ) ⊆ NullSpace(G ◦F ) and Range(G ◦F ) ⊆ Range(G). (Lec-
ture 26)

(7) Many properties and examples of matrix representations are written in Lecture 27.

Topic 6. Determinants of square matrices

(1) Recursive definition, starting with 2× 2 determinants and using cofactor expansion;
cofactor expansion can be done along any row or column of the input matrix. Special
cases: if lower or upper triangular, the determinant is the product of the diagonal
entries. (Lecture 28);

(2) Effect of elementary operations on matrices (table on page 1 of Lecture 19); Con-
sequence: a square matrix is invertible if and only if its determinant is nonzero.
(Lecture 19).
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(3) Algebraic properties of determinants: (i) det(A) = det(AT ), (ii) det(A−1) = 1/det(A),
(iii) det(A) = det(AT ), and (iv) det(AB) = det(A) det(B). (Lecture 30)

(4) Cramer’s Rule for solving square linear systems of equations with invertible coefficient
matrix via determinants. (Lecture 30)

Topic 7. Eigenvalues, eigenvectors and diagonalization of square matrices

(1) The Characteristic polynomial of A is PA(t) = det(A − t Id). Definition of real
eigenvalues of A: (i) real roots of PA(t); (ii) values λ in R where nullity(A−λId) 6= 0.
Properties: (i) eigenvalues interact nicely with powers of A, inverses and translation
A+ µId, (ii) PA(t) = PAT (t) for any matrix (Lectures 31—33)

(2) Eigenspaces Eλ = NullSpace(A−λId); geometric multiplicity of λ=dim(Eλ) ≤algebraic
multiplicity of λ as a root of PA(t).
Defective matrices: for some eigenvalue λ, its geometric multiplicity is strictly smaller
than its algebraic multiplicity. (Lecture 33)

(3) Diagonalization of an n× n matrix A over R: find a basis for Rn consisting entirely
of eigenvectors of A. Special case: A has n distinct real eigenvectors. (Lecture 33)

(4) Complex numbers a + i b for a, b in R with i2 = −1. Addition, multiplication,
complex conjugation, modulus of a complex number; algebraic properties of these
operations; z−1 = z̄/|z|2; |zw| = |z||w|; Fundamental theorem of algebra. The roots
of a polynomial in R[x] real or they come in conjugate pairs (λ, λ). (Lecture 34)

(5) The vector space Cn (use scalars in C rather than R, the rest is the same as Rn);
Complex eigenvalues: complex roots of the characteristic polynomial PA(t). Complex
eigenvectors: NullSpace of A− λId. We will have a basis for Eλ of size ≤ algebraic
multiplicity of λ as a root of PA(t). The difficulty in working with Cn vs. Rn is
computational, not conceptual. (Lecture 35)

(6) Key property: if A has real entries and λ is a complex eigenvalue of A, then dimEλ =
dimEλ. Moreover, B = {v1, . . . , vp} is a basis for Eλ then B̄ = {v1, . . . , vp} is a basis
for Eλ. (Lecture 35)

(7) Similarity of matrices: A ' C if C = S−1AS for an invertible matrix S. Properties:
same characteristic polynomial, same eigenvalues (with the same algebraic multiplic-
ity), same determinant. Key property if C = S−1AS: S defines an invertible linear
transformation T : Eλ(C)→ Eλ(A), with T (v) = Sv. Similar matrices represent the
same linear transformation of Rn. (Lecture 36)

(8) Diagonalization: A is similar to a diagonal matrix C with eigenvalues along the
diagonal. The columns of S must be an ordered basis of eigenvectors of A (using
the order given by the diagonal entries of C). This can be done over R or over
C. Advantages: Ck diagonalizes Ak, C−1 diagonalizes A−1, C + µId diagonalizes
A + µId (all with the same matrix S). It’s easier to compute Ck, C−1 than Ak and
A−1. (Lecture 36).

(9) Diagonalization is not always possible, even if we allow complex eigenvalues. Special
case: real symmetric matrices are ALWAYS diagonalizable and their eigenvalues are
real. We can find an orthogonal basis of eigenvectors, so S−1 = ST for such a choice.
(Lecture 35-36)


