STUDY GUIDE FOR THE FINAL EXAM OF MATH 2568 SPRING 2020 - PROF. CUETO

The final exam is **cummulative** and will cover basic topics on Linear algebra. Topic 1 was covered for Midterm 1, Midterm 2 material included Topics 2–4. The rest of the topics were taught after Spring Break (in online fashion).

The following is a cheat sheet containing the main results in each topic, with references and where to find them.

Topic 1. Matrices and linear systems of equations.

- (1) Special matrices: echelon form, reduced echelon form (Lecture 2), identity matrix, zero matrix.
- (2) Algorithm to solve linear systems $A\mathbf{x} = \mathbf{b}$: apply Gauss-Jordan elimination of the matrix $(A|\mathbf{b})$ and write the *general form* of a solution using independent variables. (Lectures 2 and 3)
- (3) Three scenarios: no solutions, exactly one solution or infinitely many solutions (number of free parameters = number of independent variables = number of columns of A rank of the matrix A). (Lecture 4)
- (4) Homogeneous vs inhomogeneous systems: $\mathbf{b} = \mathbf{0}$ or not. Homogeneous systems always have solutions, e.g. the trivial solution $x_1 = \ldots = x_n = 0$. (Lecture 5)
- (5) Operations on matrices and their algebraic properties: addition, scalar multiplication, multiplication of matrices (for AB, need number of columns of A = number of rows of B), transposition. (Lectures 6 and 7)
- (6) Computing inverses of square matrices: start from (A|Id) and do Gauss-Jordan elimination to get (A'|B). Then A is invertible if and only if A' = Id. Moreover, in that situation, $A^{-1} = B$. Special formula for 2×2 matrices (Lecture 8).
- (7) Algebraic Properties of inverses: inverses of products and transposes (Lecture 8)
- (8) Alternative characterization of invertible square matrices: (i) $det(A) \neq 0$; (ii) columns are linearly independent; (iii) all systems $A\mathbf{x} = \mathbf{b}$ have unique solutions; (iv) A is non-singular (its NullSpace is $\{\mathbf{0}\}$). ((i) is in Lecture 29 §5, the rest is in Lecture 9)

Topic 2. Geometry of vectors in \mathbb{R}^2 and \mathbb{R}^3 , lines and planes, the dot and cross products

- (1) Magnitude and direction of vectors, addition and scalar multiplication of vectors; Triangle and Parallelogram Laws for addition (Lecture 10)
- (2) Algebraic Properties of dot product; $|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$; the projection of a vector \mathbf{u} along another non-zero vector \mathbf{v} equals $\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v}$. (Lecture 11)
- (3) Determinantal formula for cross product in \mathbb{R}^3 ; $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin(\theta)$; Algebraic properties of the cross products, $\mathbf{u} \times \mathbf{v} \perp \mathbf{u}$ and $\mathbf{u} \times \mathbf{v} \perp \mathbf{v}$. (Lectures 11-12)
- (4) Parametric and vector equations for lines (and segments) in \mathbb{R}^2 and \mathbb{R}^3 (Lecture 12)
- (5) The equation $\eta \cdot (x x_0, y y_0, z z_0) = 0$ for planes in \mathbb{R}^3 using a point $P = (x_0, y_0, z_0)$ in the plane and the normal direction $\eta = \mathbf{v} \times \mathbf{w}$, where \mathbf{v}, \mathbf{w} are the independent directions defining the plane. Formula to determine when four points P, Q, R, S in \mathbb{R}^3 are coplanar: $|(P - Q) \cdot ((R - Q) \times (S - Q))| = 0$. (Lecture 13)

Topic 3. The vector space \mathbb{R}^n : subspaces, spanning sets, linear independence, bases of subspaces

- (1) 10 properties characterizing the vector space \mathbb{R}^4 , including the role of the zero vector **0** as a neutral element for addition, and $-\mathbf{v} = (-1)\mathbf{v}$ as an additive inverse for **v**. (Lecture 14)
- (2) 3 properties for determining subspaces of \mathbb{R}^4 . Main examples: $\{\mathbf{0}\}, \mathbb{R}^n$, spanning of a finite number of vectors, solutions to *homogeneous* systems of equations in *n* variables, NullSpace of a matrix, Row Space of a matrix and Range = Column Space of a matrix. (Lecture 14-15)
- (3) Definition of Linear independence and a spanning set (Lecture 15)
- (4) Row space of a matrix is preserved under row operations, but NOT the column space. (Lecture 15)
- (5) Definition of basis for a subspace V of ℝⁿ; 2 algorithms to build a basis of a subspace from a spanning set; coordinates of a vector in V with respect to a fixed basis for V. (Lecture 15-16)
- (6) The dimension of a subspace V as the size of any basis for it. Important consequences: (i) a spanning set of size dim(V) is automatically a basis for V; (ii) a linearly independent set inside V of size dim(V) is automatically a basis for V; (iii) a subspace V of ℝⁿ of dimension n must equal ℝⁿ; (iv) two subspaces of the same dimension with one contained in the other are automatically equal. (Lecture 17)
- (7) Definition of the nullity and rank of an $m \times n$ matrix; Property: rank $(A) = \operatorname{rank}(A^T)$; The rank-nullity theorem: rank(A) + nullity(A) = n. (Lecture 17).
- (8) Orthogonal basis for subspaces of \mathbb{R}^n via Gram-Schmidt method. For orthonormal basis: adjust the output of GS by dividing each vector by its magnitude (Lecture 18)

Topic 4. Abstract vector spaces: subspaces, spanning sets, linear independence, basis, coordinates with respect to a basis

- (1) 10 properties characterizing an abtract vector space \mathbf{W} with addition and scalar multiplication, including the role of the zero vector $\mathbf{0}$ as the *unique* neutral element for addition, and $-\mathbf{v} = (-1)\mathbf{v}$ as the *unique* additive inverse for \mathbf{v} . (Lecture 19)
- (2) Main examples: \mathbb{R}^n , the space $\operatorname{Mat}_{n \times m}$ of $n \times m$ matrices, the space \mathcal{P}_n of polynomials of degree $\leq n$, the space $C_{[a,b]}$ of continuous functions on [a,b]. (Lecture 19)
- (3) 3 properties for determining subspaces of **W**. Main Examples: sets of vectors in the spaces from (2) subject to homogeneous linear constraints; spanning of a finite number of vectors in **W**. (Lecture 20)
- (4) Linear independence for vectors in \mathbf{W} and methods to determine l.i. from a dependency relation: (i) for matrices, solve a linear system (one for each entry of the matrix computed from the relation); (ii) for polynomials or functions, evaluate f (and derivatives) at various x to obtain linear constraints of the scalars. (Lecture 21)
- (5) Definition of basis for **W**; algorithm to build basis from a spanning set (use linear dependencies to remove redundant vectors). Favorite examples: $E = \{e_1, \ldots, e_n\}$ for \mathbb{R}^n , $\{E_{11}, E_{12}, \ldots, E_{mn}\}$ for $\operatorname{Mat}_{m \times n}$, $\{1, x, x^2, \ldots, x^n\}$ for \mathcal{P}_n (Lecture 21)
- (6) Use coordinates $[_]_B$ with respect to a fixed basis B for \mathbb{W} to fast determine if a set is a spanning set/l.i./basis: just check the statement for the coordinates of the vectors and use the standard tricks from \mathbb{R}^n where $n = \dim(\mathbb{W})$. Using this we have the same 4 consequences from (6) in Topic 3. (Lecture 22)

STUDY GUIDE

Topic 5. Linear transformations between (abstract) vector spaces

- (1) Definition: a map $T: \mathbb{R}^n \to \mathbb{R}^m$ that interacts well with addition and scalar multiplication. So it satisfies (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$, and (ii) $T(\alpha \mathbf{v}) = \alpha T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} and α . Linear transformations are *completely* determined by assigning any vectors $\mathbf{w}_1, \ldots, \mathbf{w}_n$ in \mathbb{R}^m to a *basis* $B = {\mathbf{v}, \ldots, \mathbf{v}_n}$ of \mathbb{R}^n . If B is the standard basis of \mathbb{R}^n then $T(\mathbf{v}) = A\mathbf{v}$ where A is the $m \times n$ matrix $A = [T(e_1), \ldots, T(e_n)]$. (Lecture 23)
- (2) Matrix representations of linear transformations $T: \mathbb{R}^n \to \mathbb{R}^m$: pick a basis $B = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ and write $[T]_B = [T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)]$. Then: $T(\mathbf{v}) = [T]_B[\mathbf{v}]_B$ (just multiply the matrix $[T]_B$ by the coordinates of \mathbf{v} with respect to the basis B.) Special case: if we pick standard basis $E = \{e_1, \ldots, e_n\}$ for \mathbb{R}^n , then $[T]_E$ is the matrix A from (1). (Lecture 24)
- (3) The Null Space and Range of T can be computed from any matrix representation $[T]_B$; Rank-Nullity theorem for T: dim(NullSpace(T)) + dim(Range(T)) = n, and it agrees with the rank-nullity theorem for the matrix $[T]_B$. (Lecture 23).
- (4) Linear transformations between abstract vector spaces \mathbb{V} and \mathbb{V}' : choosing coordinates with respect to two basis (B for \mathbb{V} and B' for \mathbb{V}') identifies $T: \mathbb{V} \to \mathbb{V}'$ with a linear transformation $\tilde{T}: \mathbb{R}^{\dim(\mathbb{V})} \to \mathbb{R}^{\dim(\mathbb{V}')}$. More precisely: $[T(\mathbf{v})]_{B'} = \tilde{T}([\mathbf{v}]_B)$. Matrix representation for $T: [T]_{B,B'} = [[T(\mathbf{v}_1)]_{B'}, \ldots, [T(\mathbf{v}_1)]_{B'}]$, i.e. columns are coordinates w.r.t. B' for the image of each vector \mathbf{v}_i in B (Lectures 24 and 27)
- (5) A linear transformation $T: \mathbb{V} \to \mathbb{V}'$ is:
 - (i) injective if and only if NullSpace $(T) = \{\mathbf{0}_{\mathbb{V}}\}$.
 - (ii) surjective if and only if $\operatorname{Range}(T) = \operatorname{Sp}(B) = \mathbb{V}'$ for any basis B for \mathbb{V} (enough to check they have the same dimension; we get $\dim(\operatorname{Range}(T))$ from the Rank-Nullity Theorem on (3)).
 - (iii) invertible (meaning injective and surjective) if $[T]_{B,B'}$ is invertible for any choice of bases B for \mathbb{V} and B' for \mathbb{V}' . If so, $[T^{-1}]_{B',B} = ([T]_{B,B'})^{-1}$.

Rank Nullity theorem for T says $\dim(\text{NullSpace}(T)) + \dim(\text{Range}(T)) = \dim(\mathbb{V}')$. (Lecture 25 and 26)

(6) Operations on linear transformations: addition, scalar multiplication, compositions. This can all be seen on the matrix representations (table on page 1 of Lecture 26, and pages 6-8 of Lecture 27). In particular, for compositions of $F \colon \mathbb{V} \to \mathbb{V}'$ and $G \colon \mathbb{V}' \to \mathbb{W}$ we get $[G \circ F]_{B,B'} = [G]_{B',B''}[F]_{B,B'}$ for any choice of bases B, B' and B'' for \mathbb{V}, \mathbb{V}' and \mathbb{W} .

Properties: NullSpace $(F) \subseteq$ NullSpace $(G \circ F)$ and Range $(G \circ F) \subseteq$ Range(G). (Lecture 26)

(7) Many properties and examples of matrix representations are written in Lecture 27.

Topic 6. Determinants of square matrices

- Recursive definition, starting with 2 × 2 determinants and using cofactor expansion; cofactor expansion can be done along any row or column of the input matrix. Special cases: if lower or upper triangular, the determinant is the product of the diagonal entries. (Lecture 28);
- (2) Effect of elementary operations on matrices (table on page 1 of Lecture 19); Consequence: a square matrix is invertible if and only if its determinant is nonzero. (Lecture 19).

STUDY GUIDE

- (3) Algebraic properties of determinants: (i) $\det(A) = \det(A^T)$, (ii) $\det(A^{-1}) = 1/\det(A)$, (iii) $\det(A) = \det(A^T)$, and (iv) $\det(AB) = \det(A) \det(B)$. (Lecture 30)
- (4) Cramer's Rule for solving square linear systems of equations with invertible coefficient matrix via determinants. (Lecture 30)

Topic 7. Eigenvalues, eigenvectors and diagonalization of square matrices

- (1) The Characteristic polynomial of A is $P_A(t) = \det(A t Id)$. Definition of real eigenvalues of A: (i) real roots of $P_A(t)$; (ii) values λ in \mathbb{R} where nullity $(A \lambda Id) \neq 0$. Properties: (i) eigenvalues interact nicely with powers of A, inverses and translation $A + \mu Id$, (ii) $P_A(t) = P_{A^T}(t)$ for any matrix (Lectures 31–33)
- (2) Eigenspaces $E_{\lambda} = \text{NullSpace}(A \lambda Id)$; geometric multiplicity of $\lambda = \dim(E_{\lambda}) \leq \text{algebraic}$ multiplicity of λ as a root of $P_A(t)$. Defective matrices: for some eigenvalue λ , its geometric multiplicity is strictly smaller than its algebraic multiplicity. (Lecture 33)
- (3) Diagonalization of an $n \times n$ matrix A over \mathbb{R} : find a basis for \mathbb{R}^n consisting entirely of eigenvectors of A. Special case: A has n distinct real eigenvectors. (Lecture 33)
- (4) Complex numbers $a + \mathbf{i}b$ for a, b in \mathbb{R} with $\mathbf{i}^2 = -1$. Addition, multiplication, complex conjugation, modulus of a complex number; algebraic properties of these operations; $z^{-1} = \overline{z}/|z|^2$; |zw| = |z||w|; Fundamental theorem of algebra. The roots of a polynomial in $\mathbb{R}[x]$ real or they come in conjugate pairs $(\lambda, \overline{\lambda})$. (Lecture 34)
- (5) The vector space \mathbb{C}^n (use scalars in \mathbb{C} rather than \mathbb{R} , the rest is the same as \mathbb{R}^n); Complex eigenvalues: complex roots of the characteristic polynomial $P_A(t)$. Complex eigenvectors: NullSpace of $A - \lambda Id$. We will have a basis for E_λ of size \leq algebraic multiplicity of λ as a root of $P_A(t)$. The difficulty in working with \mathbb{C}^n vs. \mathbb{R}^n is computational, not conceptual. (Lecture 35)
- (6) Key property: if A has real entries and λ is a complex eigenvalue of A, then dim $E_{\lambda} = \dim E_{\overline{\lambda}}$. Moreover, $B = \{v_1, \ldots, v_p\}$ is a basis for E_{λ} then $\overline{B} = \{\overline{v_1}, \ldots, \overline{v_p}\}$ is a basis for $E_{\overline{\lambda}}$. (Lecture 35)
- (7) Similarity of matrices: $A \simeq C$ if $C = S^{-1}AS$ for an invertible matrix S. Properties: same characteristic polynomial, same eigenvalues (with the same algebraic multiplicity), same determinant. Key property if $C = S^{-1}AS$: S defines an *invertible* linear transformation $T : E_{\lambda}(C) \to E_{\lambda}(A)$, with $T(\mathbf{v}) = S\mathbf{v}$. Similar matrices represent the same linear transformation of \mathbb{R}^n . (Lecture 36)
- (8) Diagonalization: A is similar to a diagonal matrix C with eigenvalues along the diagonal. The columns of S must be an ordered basis of eigenvectors of A (using the order given by the diagonal entries of C). This can be done over ℝ or over ℂ. Advantages: C^k diagonalizes A^k, C⁻¹ diagonalizes A⁻¹, C + µId diagonalizes A + µId (all with the same matrix S). It's easier to compute C^k, C⁻¹ than A^k and A⁻¹. (Lecture 36).
- (9) Diagonalization is not always possible, even if we allow complex eigenvalues. Special case: real symmetric matrices are ALWAYS diagonalizable and their eigenvalues are real. We can find an orthogonal basis of eigenvectors, so $S^{-1} = S^T$ for such a choice. (Lecture 35-36)