Lecture II: More examples, Subgroups

I

Recall: A group is a Triple
$$(G, *, e)$$
 where G is a set, *: $G \times G \rightarrow G$, $e \in G$
satisfying (1) Associativity $(a*b)*c = a*(b*c)$ $\forall a, b, c \in G$
(2) $a*e = e*a = a$ $\forall a \in G$
(3) Inverse of elements $\forall a \in G \exists b \in G$ with $a*b = b*a = e$
 a^{-1}
Broperties: $(a*b)^{-1} = b^{-1}*a^{-1}$ & $(a^{-1})^{-1} = a$ $\forall a, b \in G$
(ancellation laws : $a*b = c*b \Rightarrow a = c$
 $b*a = b*c \Rightarrow a = c$

Definition: The order of a group G is its condensatity. Write |G|<u>Example</u>: $|S_n| = n!$; $|Z| = \infty$

EZ.1 [] The examples:
• Une source: symmetries of a structure.
EXAMPLE 1:
$$S_n =$$
 permutation (or symmetric) group m n litters.
EXAMPLE 2: Dihedral yourp D_{2n} ($n \in \mathbb{Z}_{20}$ non-modative integer, $n \ge 3$)
 \bigwedge Since books use the notation D_n for this!
"Structure" = a regular n-gen
"symmetrics" = permutation of valias so that the shape does not change,
i.e. edges of the n-gon are preserved.
Ex $n=3$
 $\sum_{i=1}^{3}$
 $\sum_{j=2}^{3}$
 $\sum_{$

Proposition: $|D_{2n}| = 2n$ (exactly 2n symmetries n on $n-g_{2n}$) <u>Broof</u>: Label the vertices of the $n-g_{2n}$ counter-clockwise, as above. IF $\sigma \in D_{2n}$, $T_{(1)} \in 31, ..., n$; has n-optimes. Say $T_{(1)} = k$. Now σ_{12} has may explains: k-1 or k+1 (vertices connected to the vertex labeled k). Once this value is fixed, the rest is determined Ex IF $\sigma_{(2)} = k+1$, then $\sigma_{(3)} = k+2$ (moden), etc...

$$\Gamma F \sigma(z) = k - 1 - \sigma(s) = k - 2 (mod n), \dots \square$$

52.2 Subgroups:

 $\frac{\Im e \text{hintton}}{\Im G} \text{ Let } G \text{ be a group and } H a \text{ subset of } G \text{ . We say } H \text{ is a subgroup} \\ \text{of } G \text{ (denoted by } H \leq G \text{) if } (1) e \in H \\ (e^{2}) a, b \in H \implies a \times b \in H \text{ (H is closed under <math>*}) \\ (3) a \in H \implies a^{-1} \in H \text{ (H is closed under inverses)} \\ \text{In other words : } H \text{ inherits a group structure from } G.$

Lemma.
$$H \subseteq G$$
 is a subgroup if, and aly if:
(i) $H \neq \phi$
(ii) $a, b \in H \implies a b^{-1} \in H$

 $\frac{3nooh!}{(=)} \text{ If } H \in G \text{ then } e \in H, \text{ so } H \neq \emptyset. \text{ Thus, (i) holds. Next, we check (ii).}$ $\text{ Tick a, beH. Since beH, then } b^{-1} \in H (by (3)). \text{ Using (z) for a, b'' we conclude. a * b'' } \in H.$

(
$$\Leftarrow$$
) We check the 3 propries:
(1) Pick $a \in H$ (where $l_{g}(i)$). Then, $a * a^{-1} \in H$ by (ii). So $e \in H$.
(3) By (1) $a(ii)$, we have $l_{g}a \in H \implies e * a^{-1} = a^{-1} \in H$.
(2) Assume $a, b \in H$. Then, by (3) $b^{-1} \in H$ Now, by (ii), $a, 5^{-1} \in H$ yields $a * (b^{-1})^{-1} = a * b \in H$.

(Canullation Laws)

so
$$a^{k-\ell} \in 3e, a, ..., a^{k-\ell-1}$$
 f s $o < k-\ell < k$
This contradicts the minimality of k .
Conclusion: $G = 3e, a, a^2, ..., a^{k-1}$ f f f k / k
Here, $2/k / k = 3o, 7, 2, ..., k-1$ f with group operation : $\overline{a} + \overline{b} = \overline{a+b}$
Lemainder modulo k)