Lecture V: Cosets modulo a subgroup; Index of a subgroup ۱ TODAY: First attempt to defining a quotient of a group by a subgroup § 5.1. Cosets module a subgroup: Let G be a group and H & G a subgroup Definition: For x, y ∈ G, we say x~y; if x'y ∈ H (L for left) Paspositin: ~ is an equivalence relation on G 'Snoot: We deck is reflexive, symmetric and transitive. (1) $\forall x \in G$, $x \sim_{L} x$ since $x' \cdot x = e \in H$, so \sim_{L} is reflexive (2) If XNLY, then YNLX. Indeed X-'YEH implies (x-'y) EH. because His a subgroup. But $(x^{-1}y)^{-1} = y^{-1}x \in H$ means $y \sim_{\sim} x$. So ~ is symmetric. (3) If xng and yng , then x'y EH and y'z EH. Mulliplying both elements we get $(x^{-1}y)(y^{-1}z) = x^{-1}z \in H$ because H is a subgroup. So, X ~ 2 by definition. Hence, ~ is Transitive. Define: G/H := G/NL = set of equivalence classes in G modulo NL. We call it the set of left wets of G modulo H. Nove explicitly, an element of G/H is a subset C = G st $x, y \in C \iff x \sim_L y$ (ie $x^{-1}y \in H$) We typically write C as [x] for any XEC. Q: How many elements does [x] have? Lemma : Let $C \subseteq G$ be an equivalence class modulo N_{L} . Bick $x \in C$. Then He set map $H \xrightarrow{\Phi} C$ is a bijection. h i xh $\frac{\text{Sassh:}}{\text{Sassh:}} \cdot xh \sim_{L} x \quad \text{so} \quad \text{Im} \quad \Phi \subseteq C \quad (\Phi \text{ is well defined})$

•
$$\Phi$$
 is injective (au-to-out): $x h_1 = xh_2 \implies x' x h_1 = x' x h_2$. So, $h_1 = h_2$.
• Φ is into (subjective): given $g \in C$, we know $x n_2 g$, so $x' g \in H$
Write $h = x' g$. Then, $\Phi_{[h]} = xh = xx' g = g$, is $g \in Inage(\Phi)$.
Biodilary: Every equivalence class $C \subseteq G$ of n_1 is of the form xH for
 $x \in C$.
Note: The choice of x is not unique, because any $x \in C$ gives $C = xH$.
Thus, a cloice veeds to be unde!
 $xH = gH$ as subject of $G \iff x'' g \in H$.
As G baseds into disjoint union of equivalence classes modulo n_1 , we get
Lemma: For any cloice of expresentatives $(g_n)_{n \in K}$ of equivalence classes
modulo n_2 , we get
 $Here, A$ is a set with the same cardinality as G'_{H} .
(reducy: If G and H are finite, we get $|G| = |G/H| \cdot |H|$
 $Example 1$: $G = S_n = permutations on $11, e_1 \dots, w$ $|G| = w!$
 $W = S_{n-1} = \frac{1}{2} \sigma \in S_n = 0$ for $10 m_1 = w$ $10 m_1 = m_1$.
($\sigma \in m_1 = \frac{1}{2} \sigma \in S_n = \frac{1}{2} \sigma \in S_n = \frac{1}{2} \sigma (m)$
($(\sigma \circ \pi)_{(n)} = \sigma (\pi_{(n)}) = \sigma(m)$ that same for all
 $\sigma' = \frac{1}{2} \sigma(m)$
($(\sigma \circ \pi)_{(n)} = \sigma (\pi_{(n)}) = \sigma(m)$ that same for all
 $\sigma' = \frac{1}{2} \sigma(m)$
($(\sigma \circ \pi)_{(n)} = \sigma (\pi_{(n)}) = \sigma(m)$ the same for all
 $\sigma' = \frac{1}{2} \sigma(m)$
($(\sigma \circ \pi)_{(n)} = \sigma (\pi_{(n)}) = \sigma(m)$ the same for all
 $\sigma' = \frac{1}{2} \sigma(m)$
($(\sigma \circ \pi)_{(n)} = \sigma (\pi_{(n)}) = \sigma(m)$ the same for all
 $\sigma' = \frac{1}{2} \sigma(m)$
($(m \circ \pi)_{(n)} = \sigma (\pi_{(n)}) = \sigma(m)$ the same for all
 $\sigma' = \frac{1}{2} \sigma(m)$
($H = h \in (r, r^n, r^{n-1}) = (r^{n-1})$ the same for all
 $\sigma' = \frac{1}{2} \sigma(m)$ the same for $m = \frac{1}{2} \sigma(m)$ the same for all
 $\sigma' = \frac{1}{2} \sigma(m)$ the same for $m = \frac{1}{2} \sigma(m)$.$

(K)

$$\frac{552 \quad \text{Index}}{9} \frac{1}{9} \frac{a \quad \text{cul} \quad \text{group}}{2} = \frac{9}{2} \frac{1}{100} \frac{1}{10$$

(2) Special case :
$$H = \langle a \rangle$$
 for some $a \in G$
 \Rightarrow $|H| = ord(a)$ $e = so ord(a)$ divides $|G|$ $\forall a \in G$.
Applicatin: If $|G| = p \ge z$ is prime, then every $a \in G$? Let generates G . In particular,
 $G = Z/PZ$ (and so it is abelian)

Application 2: In these conditions, we have ord (and) divides low (ord (a), ord(b)) Furthermore, ord (a*b) = lon (ord(a), ord(b)) if, in addition, <e> < > 3e4. Proof: Define H = < a, 5> < G Since a+5=L*a, we know H is an abelien youp. Write k=ord(a+b). So (a+b) = a + b = e a*6=6*a