Lecture VI: Right costs and Normal subgroups
Recall: G group,
$$H \subseteq G$$
 subgroup
We defined an equivalence relation on G : $X \sim_{L} g$ (\Longrightarrow $X^{-1} g \in H$
 $G'_{H} = xt of equive closes modulo \sim_{L}$. Norme: Left cosets
 $= j \times H$: $x \in Gj$

I

EC.1 Right costs:

We can define
$$H^{C}$$
 := the set of right costs modulo H in a similar way.
Definition: $x_{C} \cdot y$ if and rely if $y \times^{-1} \in H$.
It's easy to check g^{C} is an equivalence relation when $H \leq G$.
 $\Rightarrow H^{C} = G_{f^{C}} = equivalence classes modulo g^{C} .
Its elements are of the form $H \times for \times eG$.
Usarly : $H \times = H \cdot y \Leftrightarrow y \times^{-1} \in H$
As before, $|G| = |H^{C}| \cdot |H|$.
In patiendar, $|H^{C}| = |G'H| = (G:H)$ if G is finite
Prophetical, $|H^{C}| = |G'H| = (G:H)$ if G is finite
Prophetical, $|H^{C}| = |G'H| = (G:H)$ if G is finite
Prophetical, $|H^{C}| = |G'H| = (G:H)$ if G is $H \to H \times^{-1}$
Resole: Ψ is well-defined : $xH = yH \iff x^{-1}y \in H$.
H $x^{-1} = Hy^{-1} \iff y^{-1}(x^{-1})^{-1} = y^{-1} \times eH$
But $x^{-1}y \in H \Rightarrow (x^{-1}y)^{-1} = y^{-1} \times eH$ because $H \leq G$.
 Ψ is anto: $Hy = \Psi(y^{-1}H)$ $\forall y \in G$.$

 $M \quad \text{We have } G = \prod_{d \in A} g_d^H = \prod_{d \in A} Hg'_d \quad \text{But this clocs}^2$ $\frac{NOT}{MOT} \quad \text{mean that} \quad g_d H = Hg'_d, \quad \text{If so} \quad g_d \in Hg'_d, \quad \text{so we should}$ have $g_d H = Hg_d$. $Ouly \quad \text{special subgroups } H \quad \text{will allow for such identifications, namely for}$ NOTMAL subgroups.

\$6.2 Normal sub youps:

Definition: Fix a group G and $H \equiv G$ a subgroup. We H is a normal subgroup and write $H \trianglelefteq G$ if $\forall x \in G$ a h $\in H$ we have $x h x^{-1} \in H$. Equivalently, $H \trianglelefteq G$ if for every $x \in G$ we have x H = H x as subsite of G In short: left water we some as night costs.

<u>Main point</u>: it is may when HSG that G/H has a natural group structure inherited from G. We will call G/H the gustient group.

 $\frac{E_{xanples:}}{x h x^{-1}} = x x^{-1} h = h \in H$ if $x \in G \in h \in H$.

(2) G = Free (3a, bi) and $H = \langle xy x^{-1}y^{-1} : x, y \in G \rangle$ $z \in G$ a h in H, then $z h z^{-1} h \in H$ (it's one of the generators). This gives $z h z^{-1} \in Hh = H$, so $H \leq G$.

s 6.3 Group structure
$$M = G/H$$
:
Recall: An element of the set G/H is a subset of G . It has the torm
 $gH := 3 gh | h \in H g | Jor some (NOT uniquely determined) $g \in G$.
Q: How can we "multiply" Two such sets and get another such set?
Guess: $(g_1H) + (g_2H) = (g_1g_2)H$$

Issue : Since the definition involves classing
$$q_{11}, q_{2}$$
 it may very well mer
be well defined. Here is the definition :
 $q_{11}H = q_{11} a_{12}^{2} a_{13}^{2} a_{22}^{2} a_{23}^{2} a_{13}^{2} a_{13}^{2} t_{14}^{2} t_{14}^{2} t_{14}^{2} a_{13}^{2} a_{13$

(3) Inverses:
$$gH * g'H = (gg')H = eH = (g'g)H = g'H * gH$$
, so 4
 $(gH)'' = g''H$ by definition.

In general, it is hard to build normal subgroups, and we will see some Tricks in the future. For now, we'll construct a bunch of examples.

$$\frac{\mathsf{E}_{\mathsf{xam}}\mathsf{ple}_{1:}}{\mathsf{G}} = \mathsf{S}_{\mathsf{Y}} \geqslant \mathsf{H} = \mathsf{S}_{\mathsf{e}}, (\mathsf{I}_{\mathsf{z}})(\mathsf{I}_{\mathsf{Y}}), (\mathsf{I}_{\mathsf{Y}})(\mathsf{z}_{\mathsf{Z}})$$

is again a product of disjoint cycles of the same length as $\sigma = \sigma_1 \sigma_2 \cdots \sigma_{\Gamma}$