<u>§9.1</u> First Isomorphism Theorem: Let $F: G_1 \longrightarrow G_2$ be a group homomorphism. Write $K := Ker(F) \leq G_1$ and let $T: G_1 \longrightarrow G_1 / Le$ the natural projection Theorem: (1) There exists a unique $\overline{F}: G_1 / L \longrightarrow G_2$ such that $f(x) = \overline{F}(T(x)) \quad (= \overline{F}(xK)) \quad \forall x \in G_1$ Hore precisely, we have the commutative diagram: $G_1 \xrightarrow{F} G_2$ $\overline{IL} \mid \begin{array}{c} G_2 \\ \overline{F} \\ G_1 / K \end{array} = \overline{F}(xK) = F(x)$

(2) F sets up an is morphism G1/K ~ Im (F).

We get the commutative diagram $G_1 \xrightarrow{f} G_2$ $T \xrightarrow{0} V/$ $G_{1/K} \xrightarrow{\overline{f}} Im(f)$

 $\frac{E_{xample}: G_{1} = GL_{2}(\mathbb{R}) \xrightarrow{det} \mathbb{R}_{\neq 0} \text{ is a surjective group homomorphism.}}{Ker(Let) = 3 X \in GL_{2}(\mathbb{R}) : det(X) = 15 = SL_{2}(\mathbb{R}) + Hence, by First Iso Thm : GL_{2}(\mathbb{R}) \simeq \mathbb{R}_{\neq 0}.$

 $\frac{3nobf:}{F(xK)} = F(x) \qquad (so \quad FoIL = f)$ $We need to check \quad F is well-behined : xK = yK \stackrel{?}{\Rightarrow} F(x) = F(y).$ But $xK = yK \iff x^{-1}y \in K = Ker(F).$ Since $e_z = F(x^{-1}y) = F(x)^{-1}F(y)$, we get F(x) = F(y) as we wanted.

. (Leck 1 (earry):
$$\overline{F}$$
 is a group hummorphism.
(2). (Leck 2: Ker $(\overline{F}) = 3e_1K_1$. Hence by Easy Lemma 929, \overline{F} is injective.
 $3F/\overline{F}(xK) = e_2 \implies F(x) = e_2 \implies x \in K$ and $xK = e_iK$.
By definition $\operatorname{Im}(\overline{F}) = \operatorname{Im}(F) =: H_2 \leq G_2$ and
 $\overline{F}: GV_K \longrightarrow H_2 \leq G_2$ is both injective and surjective
bince \overline{F} is a youth hummorphism and a bijection, we conclude \overline{F} is an 150 g
 39.2 Applications:
Theorem (Clearificative of cyclic youths)
Any cyclic youth G is isomorphic to 2 or $2F_2$ for L_2, e_2, \dots . (and only one of Hum)
 $\underline{Subh}: \overline{F}$ is a group hummorphism.
I is a group hummorphism.
 F is surjective by construction
 $k = r(F) \leq 2 = (1)$, so it is also a cyclic group. Ker $(F) = \langle K \rangle$ for some
 $k \ge 0$.
Thus, by First Isomorphism Theorem, is have $\frac{2}{Ker} f = G$.
Have, $\overline{d} = \frac{2}{0} = \frac{2}{0} Z$. if Ker $F = (0)$
The answer an all un-isomorphic by andicality.
 P Another way to interpret $(x - w_e)$ First Iso Theorem .
Lemma: Let $F: G, \longrightarrow G$, be a surgetive way hummorphism and $Lt H \leq G$ be

Lemma: Let $h: G_1 \longrightarrow G_2$ be a surjective group homomorphism and let $H \leq G$ be such that $f(x) = e_2$ $\forall x \in H$ (ie $H \subseteq Ker(F)$). Then:

 $H = Ker(F) \iff G_{H} \cong G_{2}$ with \cong induced from f. <u> $3n90F: (\Rightarrow)$ </u> is First Iso Theorem

$$(\Leftarrow) \text{ Let } G_1 \xrightarrow{\mathsf{TC}} G_1/_{\mathsf{H}} \text{ be the natural projection. Since } G \xrightarrow{\mathsf{TC}} G_1/_{\mathsf{H}}$$

3

Д

Back To Example 1 \$8.2:

$$D_{2n}$$
 $f = 3 \pm i \pm F(s_1) = F(s_2) = -i$
 ker(F) = H = (s_1 s_2) = (s_1, s_2) = e >

 $(s_1, s_2 + s_1) = (s_1, s_2) = e >$
 $H \leq D_{2n}$

Now: $D_{2n} \xrightarrow{\sim} 3 \pm 1$ because the map is surjective & $|D_{2n}| = 2$ $\overrightarrow{w} \xrightarrow{\leftarrow} F(w)$

So by Lemma
$$\$9.2$$
: $H = Ker(F)$

Proposition 2 \$8.2:
$$f: (A | B) \longrightarrow H f = \frac{1-b-1}{2} \{ \tilde{F}: Free (A) \longrightarrow H gr ham \}$$

 $\frac{Proposition 2 $8.2: }{F}: \tilde{F}: K \in A | B > \longrightarrow H f = \frac{1-b-1}{2} \{ \tilde{F}: Free (A) \longrightarrow H gr ham \}$
 $\frac{Proposition 2 $8.2: }{F}: \tilde{F}: K \in A | B > \longrightarrow H f = \frac{1-b-1}{2} \{ \tilde{F}: Free (A) > 30 \ Mg \subseteq Ker \tilde{F} \}$
 $\frac{Proposition 2 $8.2: }{F}: \tilde{F}: K \in K \in F \in A \}$
 $\frac{Proposition 2 $8.2: }{F}: \tilde{F}: K \in A | B > \longrightarrow H f = \frac{1-b-1}{2} \{ \tilde{F}: Free (A) \longrightarrow H f = \frac{1-b-1}{2} \}$
 $\tilde{F}(r) = 0 \quad for all r \in R \quad so \quad R \in Ker \tilde{F}.$
 $Proposition = F(r) \quad R \in Ker \tilde{F}.$

In back
$$\operatorname{Lonj}(ab) = \operatorname{Lonj}(a) \circ \operatorname{Lonj}(b)$$

 $\operatorname{Lin} back - \operatorname{Lonj}(ab) = \operatorname{Lonj}(a) \circ \operatorname{Lonj}(b)$
 $\operatorname{Lin}(c) = \operatorname{Lonlity} G \longrightarrow G$
Hence: $\operatorname{Lonj}(a)^{-1} = \operatorname{Lonj}(a^{-1})$
 $\overline{\mathsf{Example}}$: $G_{1} = \operatorname{Face}(c) = \operatorname{Co}_{2} b \operatorname{Lond}(bc) \xrightarrow{\mathsf{P}} G_{2} = \mathbb{Z}^{2}$
 $\xrightarrow{\mathsf{W}} \longrightarrow (\operatorname{Lond}(bc) \xrightarrow{\mathsf{P}} G_{2}) = \mathbb{Z}^{2}$
 $\xrightarrow{\mathsf{W}} (\operatorname{Lon}(bc) \xrightarrow{\mathsf{P}} G_{2}) = \mathbb{Z}^{2}$
 $\xrightarrow{\mathsf{W}} (\operatorname{Lon}(bc) \xrightarrow{\mathsf{P}} G_{2}) = \mathbb{Z}^{2}$
 $\xrightarrow{\mathsf{W}} (\operatorname{Lon}(bc) \xrightarrow{\mathsf{P}} G_{2}) = (-5, z)$.
 $\cdot (\operatorname{Loim}(bc) \xrightarrow{\mathsf{P}} G_{2})$
 $\cdot (\operatorname{Loim}(bc) \xrightarrow{\mathsf{P}} G_{2}) = (-5, z)$.
 $\cdot (\operatorname{Loim}(bc) \xrightarrow{\mathsf{P}} G_{2})$
 $\cdot (\operatorname{Loim}(bc) \xrightarrow{\mathsf{P}} G_{2}) = (-5, z)$.
 $\cdot (\operatorname{Loim}(bc) \xrightarrow{\mathsf{P}} G_{2})$
 $\cdot (\operatorname{Loim}(bc) \xrightarrow{\mathsf{P}} G_$

Lemma 2: If $f:G_1 \longrightarrow G_2$ is a surjective group homomorphism, and $N_1 \leq G_1$, then $f(N_1) \leq G_2$.

Theorem 3: Given NQG, let HQG with NGH. Then: $(1) \stackrel{H}{\nearrow} \leq \stackrel{G}{\checkmark}$ (2) $G_{H} \simeq G_{N}$ <u>Brook</u>: Unsider TC: G - G/N Then H/N = TC(H) & G/N by Lemma 2 because TT is surjective. This shows (1) For (2), we consider the projection Ttz: 6% - 3/N/H/N

 $\Psi = \overline{K_2} \circ \overline{K} : G \longrightarrow G' / H' N$ group honourghism.

• The map of is surjective because both To a The are surjective. 6

• Ker
$$\mathcal{C} = \mathcal{L} \times \in G$$
 : $\mathbb{T}_{2} (\mathbb{T}_{(X)}) = e^{\mathcal{H}_{N}} = \mathcal{L} \times \in G : \mathbb{T}_{(X)} \in \text{Ker } \mathbb{T}_{2} = \mathcal{H}_{N}$
$$= \mathbb{T}_{-}^{-1} (\mathcal{H}_{N}) = \mathcal{H}$$
(*)

(⊆) T(x) = XN ∈ H/N (⇒ XN = hN for som hett. But this mans h"X ∈ N ⊆ H, so X ∈ h H ⊆ H. We can clude that X ∈ H. II =) By 1st Iso Thurem $\overline{\Psi}$: $\overline{G}_{H} \xrightarrow{\sim} G'_{N/H_{N}}$