Lecture X: Group actives m a set
Summery of the lower (Weeks 122) So for, we have
(1) Defined suched terms from Group Theory:
. Group subgroups, subgroups generated by a set, other Hayroup
. Left and Right lasts (GA & HNG), Questient groups
. Group Homospherms / Isomorphisms; keened a Image of ge homosophisms.
. Group presentations
(2) Examples: Free product, Den, Sa
(3) Itain assults: 3 Isomorphism Thins, Classification of cyclic georps.
IODAY: Group actives m Sets.
Siles Definition:
Trix G group and X any set.
Behinition: An action of G m X is a set map
$$G \times X \xrightarrow{ad} X$$
 satisfying
(1) e-x = x $\forall x \in X$
(2) (9.16) · X = 9.1 · (9.5*X) \forall 8.152 · GG and $x \in X$.
Quert d en above, we say G actor mX, we emotions denote this by GCX
autif count to
Stander: Giving such d is the same as specifying a group homomorphism
P: G \longrightarrow Aut_{act}(X) := 1(1, X $\rightarrow X$ 1 is a stighting
 $g : \longrightarrow d_{3}: x \mapsto g \cdot X$
(3) (9.15) · X = 9.1 · (9.5*X) \forall 8.152 · GF and $x \in X$.
Quert d en above, we say G actor mX, we emotions denote this by GCX
autif count to
Beinition for $M = M_{act}(X) := 1(1, X \to X)$ 1 is a stighting
 $g : \longrightarrow d_{3}: x \mapsto g \cdot X$
(3) (9.15) · X = 9.1 · (9.5) × (9.5)
But Aut_x(X) is a group under composition (Set-automorphisms of X, m
att (9.15) = 4 · (9.5) × (9.5)
But Aut_x(X) is a group under composition (Set-automorphisms of X, m
att (1) masso $d_{2} = id_{X}$ mo united in Aut_x(X)
(2) $d_{3.5x} = d_{3.5} \circ d_{3x}$

$$\begin{array}{c} \underbrace{\operatorname{Detinition}}_{1} & \operatorname{The} \ \underline{\operatorname{stabilitype}} \ of \ x \in \mathbb{X} \ (s \ f \in \mathbb{K} \ f \in \mathbb{K} \ (s \ f \in \mathbb{K} \ (s \ f \in \mathbb{K} \ f \in \mathbb{K} \ (s \ f \in \mathbb{K} \ f$$

$$\frac{\text{laim}}{2n} \cdot p = 2n \iff S(p) \notin P, \Gamma(p), \dots, \Gamma^{n-1}(p)$$

$$\frac{P \operatorname{roof}}{2n} \cdot (p) = \Gamma^{k}(p) \quad \text{for some } k = 0, \dots, n-1 \quad \text{then we have } |D_{2n} \cdot p| < 2n,$$
which is a contradiction.

(
$$\Leftarrow$$
) We prove the entraportive statement.
IF $|D_{2n} \cdot p| < 2n$, then we have a repeated element x .
(laim: $x = sr^{k}(p) = r^{j}(p)$ for some k, j
 $\frac{laim: x = sr^{k}(p) = r^{j}(p)$ for some k, j
 $\frac{g_{f'}}{g_{f'}} = \frac{g_{r'}(p)}{g_{r'}(p)} = \frac{g_{r'}(p)}{g_{r'}(p)} = \frac{g_{r'}(p)}{g_{r'}(p)} = \frac{g_{r'}(p)}{g_{r'}(p)} = \frac{g_{r'}(p)}{g_{r'}(p)}$
So the repetition can only come from some x in both sets
But using $sr^{k} = r^{-k}s$ in D_{2n} , we get $r^{j}(p) = sr^{k}(p) = r^{-k}s(p)$,

so
$$\binom{k+j}{(p)} = \binom{k}{r} \binom{j}{(p)} = s(p) \implies s(p) \in \frac{j}{p}, r(p), \dots, r^{n-j}(p)$$