l

Still Counting Fix point sub:
Recall (Paoposition 2 \$ 11.2) For
$$p \in \mathbb{Z}_{>2}$$
 prime and $r, m \in \mathbb{Z}_{>0}$, we have:
 $\begin{pmatrix} p^{cm} \\ p^{r} \end{pmatrix} \equiv m \pmod{p}$
The following curcicl idea was used in the proof:
Lemma: If $G \in X$ and $|G| = p^{r}$ (a power of a prime), then $|X| \equiv |X|^{r}$ und p
Here, $X^{G} := \frac{1}{2} \times K \times \frac{1}{2} \cdot \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \cdot \frac{1}{2$

Thus,
$$|O| = 1$$
 or $|O| = 0$ (mod p)
Hence, we get $|X| = \pm$ orbits of size 1 (mod p)
Orbits of size 1 = $3 \times \in X$ | $3 \cdot \times = \times \forall 3 \in G \in X^G$
Cruclusin: $|X| = |X^G|$ (mod p)

\$19.2 Application: p-groups

Definition: Fix ppaine. A finite group G is called a <u>p-group</u> if $|G| = p^r$ for some $r \ge 1$. Theorem: If $|G| = p^r$ is a p-group, then $|Z(G)| = p^s$ for some $1 \le s \le r$. <u>Proof</u>: We let G act a itself by any conjugation. By the Lemma, \ddagger fixed points $\equiv |G| = o \pmod{p}$, so $p \mid |Z(G)|$ $3x \in G : 3xg^r \le x \forall g \ f = Z(G)$ Since $|Z(G)| \mid |G| = p^r$, we are checked $|Z(G)| = p^s$ for $1 \le s \le r$. <u>Note</u>, $Z(G) \supseteq G$ is a normal abelian subgroup of G. So it seems we have some "inductive" statement for every p-group.

Tix
$$(Gl = n)$$
 and p a paime number with pln Waite $n = p^{c}m$ with $gcd(p,m) = 1$
 $\frac{\Im(mitim)}{(21.5)}$
 $\frac{\Im($

whe prove each part separately:

$$\frac{g_{noof} of(1):}{GCX}$$
 when let $X:=$ set of all p' -element subsets of G a let
 $\frac{GCX}{GCX}$ via $g_{0}3\sigma_{1},...,\sigma_{p}t=3g_{0}\sigma_{1},...,g_{0}\sigma_{p}t$ with GCG by left
nulliplication
 $\frac{Observation 1:}{IF}$ $H=3h_{1},...,h_{p}t\in X$, then $Stab_{G}(H)=3g:$ $g:H=H3$
In particular, $gh_{1}=hi$ for some $1\leq i\leq p'$, meaning $g=h_{1}h_{1}^{-1}$ for some
 $1\leq i\leq p'$
 $=>$ $Stab_{G}(H) \leq 3e$, $h_{2}h_{1}^{-1}$, \dots , $h_{p}rh_{1}^{-1}$, hence
 $IStab_{G}(H) |\leq p'$ $HH\in X$

Note: if = holds, then Stab_G(H) is a p-sylow subgroup of G. Observation Z: $|X| = \begin{pmatrix} p^{r}m \\ p^{r} \end{pmatrix} \equiv m \pmod{p} \neq 0 \mod{p}$. As $|X| = sum of orbit sizes, there must be some orbit, say <math>0 \in \mathbb{C}^{X}$, such that $|0| \neq 0 \mod{p}$. Peck $H \in O$. Then, $|Stal_{G}(H)| = \frac{|G|}{|O|} = p^{r}m \qquad e \quad p \neq 10|$ forces $|Stal_{G}(H)| = p^{r}m' \qquad with \qquad u' = \frac{m}{|O|}$ Combining Observatives 1 and 2, we get m' = 1 & $|Stab_{G}(H)| = p^{r}$, as we wanted Next time: Proof of (2) and (3)