l

(2) Sylow 1-subgroups are unique up to canjugation
(3)
$$n_1 = #$$
 Sylow 1-subgroups of G $n_1 = 1$ and (p) & $n_p \mid |G|$.

$$\frac{\operatorname{Picof of (1)}: (\operatorname{Lecture 14})}{\operatorname{GCX}} = 3 \operatorname{g}^{r} - \operatorname{diment subset of } \operatorname{GF} [X] = (\operatorname{g}^{p_{r}}) \equiv m (\operatorname{mod} p)}{\operatorname{GCX}}$$

$$= \operatorname{Stab}_{G}(H) \subseteq \{ \operatorname{h}_{i}^{-1} \operatorname{h}_{i} : i = 1, \dots, p^{r}\} \operatorname{hao size} \leq p^{r}.$$
Since $1 \times m \implies p \times |X| = \sum 101 \qquad s = \exists 0 \in K \text{ with } p \times 101$

$$= \operatorname{GCX} \quad \operatorname{Stab}_{G}(H) \subseteq \{ \operatorname{h}_{i}^{-1} \operatorname{h}_{i} : i = 1, \dots, p^{r}\} \operatorname{hao size} \leq p^{r}.$$
Since $1 \times m \implies p \times |X| = \sum 101 \qquad s = \exists 0 \in K \text{ with } p \times 101$

$$= \operatorname{GCX} \quad \operatorname{Stab}_{G}(H) \subseteq \{ \operatorname{h}_{i}^{-1} \operatorname{h}_{i} : i = 1, \dots, p^{r}\} \operatorname{hao size} \leq p^{r}.$$
Since $101 | 1G1, \text{ we get } |01| \text{ m. Write } 0 = G \cdot H \text{ for game } H.$

$$= \operatorname{Include}: |\operatorname{Stab}_{G}(H)| = p^{r} \quad \operatorname{because} \quad |G| = |01| \operatorname{Stab}_{G}(H)|, \quad So \quad \operatorname{Stab}_{G}(H) \in \operatorname{Sylp}(G)^{r}.$$

$$= \operatorname{GC} \quad \operatorname{Stab}_{G}(H) = p^{r} \quad \operatorname{because} \quad |G| = 101| \operatorname{Stab}_{G}(H)|, \quad So \quad \operatorname{Stab}_{G}(H) \in \operatorname{Sylp}(G)^{r}.$$

Theorem: Let P he a Sylow p-subgroup of G and
$$H \leq G$$
 he a p-group.
Then, $\exists g \in G$ such that $H \subseteq g P g^{-1}$.
Proof: We first note that $H \subseteq g P g^{-1} \iff H g \subseteq g P \iff H g P \subseteq g P$,
maxing the coset $g P \in G/P$ is fixed by H where $G \subset G/P$.
by left multiplication This is what we will prove.

• We consider
$$H \subset G/p$$
 ria $h \cdot (g'P) = hg'P$ for each $g'P \in G/p$.
Now: $|H| = p^{s}$ is ser and G/p has a elements with $m \neq 0 \mod(p)$
By Lemma $\exists 12.1$ $m = |G/p| \equiv \# H - fixed points of G/p . $mel(p)$
Since $m \neq 0 \mod(p)$, we have at host i H-fixed point eFG/p , i.e. $\exists g \in G$ set
 $h(gP) = gP$ $\forall h \in H$, i.e. $H \subseteq gPg^{-1}$.$

Second of (3): Let
$$S_{p} = st$$
 of Sylaw p-subproups of G
So far, we know: $S_{p} \neq \emptyset$ (by (1))
 $G \subset S_{p}$ by unjugation is transitive. (by (2))
We unle $n_{p} = \frac{1}{4} S_{p}$.
As S_{p} has a simple solid, we know $n_{p} = \frac{1}{15} \frac{1}{16} \frac{1}{$

Earling: If
$$f_0 \in G$$
 is the ady Sylar q-subpary of G, then $P_0 \leq G$
Such: gP_0g^{-1} is a q-Sylar subgroup of G V g e G. By uniquenes, we have $gP_0^{-1} = P_0$ by definition.
NEXT GOM: Use Sylar Theorems for solving z types of problems:
(I) Given a bink group G and a paine p with p1161, determine Sylq(G)
(II) Find due materiarial , paper normal subgroup of G
(II) Find due materiarial , paper normal subgroup of G
(II) Find due materiarial , paper normal subgroup of G
(II) Find due materiarial , paper normal subgroup of G
(II) Find due materiarial , paper normal subgroup of G
(III) Find due materiarial , paper normal subgroup of G
(III) Find due materiarial , paper normal subgroup of G
(III) Find due materiarial , paper normal subgroup of G
(III) Find due materiarial , paper normal subgroup of G
(III) Find due materiarial , paper normal subgroup of G
(III) Find due materiarial , paper normal subgroup of G
(III) Find due materiarial , paper normal subgroup but how many G is they are
Site Sylaw subgroups of Sp:
Sub G = Sp with p youne Then, $|G| = p! = (p_{-1})! p$
=) Any Sylar p-subgroup G has view p . so $S \simeq Z/p_Z$.
-3 has p_1 elements of order p are proved
Elements of order p and p -capets
. If $SgP_0(S_1) = 3P_{1,1} \dots P_{n_1}P_1$, then $P_1(P_1^{-1} = 3id)$ if $i\neq j$
=> $\frac{1}{p_{11}} = \frac{p!/p}{p_{11}} = (p_{-2})!$
Site $Sylaw$ outgroups of Sq:
 $G = Sq$ (G) = $2q = 2^3 \cdot 3$
G: What about $Sgl_3(S_1)$? $M_3 = i(s)$ a net $B = N_2 = i M n.$
 $P \leq Sgl_3(S_1)$ has relet s , so it's cyclic , generated by a 3-cycle.

3-cycles in $S_4 = \binom{4}{3} \frac{3!}{3} = 4\cdot 2 = 8$ Each P has z elements of order 3 Pi, 1; \in Syl₃ (P₄) with $i \neq j$ has $P_i \cap P_j = iet$ because $|P_i| = |P_j| = 3$ is a prime number \Rightarrow $n_3 \cdot 2 = \text{Total}$ number of 3-cycles gives $n_3 = \frac{8}{2} = 4$. Conclude: Syl₃ (Sy) = $\langle \langle (123) \rangle$, $\langle (124) \rangle$, $\langle (134) \rangle$, $\langle (234) \rangle$ } We'll discuss Syl₂(Sy) Tommon .

4