Recall: Last time, we used Sylow Theorems to show

$$G_{SP}$$
, $IGI = 45 \implies G \cong (A_{roup} \circ f) \times (A_{roup} \circ f)$
 $Size 9) \times (A_{roup} \circ f)$

This is an example of a direct product Lemma: Given 61,62 groups, the cartesian product $G_1 \times G_2$ is a group with • $e_{G_1 \times G_2} = (e_{G_1}, e_{G_2})$ • $\star : G \longrightarrow G$ $(g_1, g_2) \star (g'_1, g'_2) = (g_1 \star_1 g'_1, g_2 \star g'_2)$. Basof: Associativity and existence of imperson are imberited from both $G_1 \star G_2$ Tudeed: $(g_1, g_2)^{-1} = (g_1^{-1}, g_2^{-1})$.

\$ 19.1 Direct Products:

Recall the following lemma from \$18.1 Lemma: Let G be a group, and N_1, N_2 be 2 subgroups of G. Assume that (1) $N_1, N_2 \leq G$ (2) $N_1 \cap N_2 = 3e \xi$.

Then $f: N_1 \times N_2 \longrightarrow G$ (5 a group is mirphism. $(x_1, x_2) \longrightarrow x_1, x_2$

Brook: Since N, N2 & G and N, N2 = 3es, Lemma ensures that fis a

$$\begin{cases} y_{0}y_{1} \ himmorp \$$

· f is surgective : Since n, nz=nzn, Yn, EN, YnzENz any word on N, & Nz

<u>Claim:</u> x:,--xij=e with i,s-sij & xisENis ¥ s=1---j ⇒ xis=e ¥s.³ SF/ By induction on zejsk Base case: k=2 is Twe by Lemma 2 Inductive Step: Assume the statement is true for S<j<k. $\chi_{i_1} \cdots \chi_{i_s} \chi_{i_{s+1}} = \varrho \iff \chi_{i_1} = \chi_{i_{s+1}} \cdots \chi_{i_2} = \chi_{i_2} \cdots \chi_{i_{s+1}} = \varrho \iff \chi_{i_1} \cdots \chi_{i_{s+1}} = \chi_{i_2} \cdots \chi_{i_{s+1}} = \chi_{i_{s+1}} \cdots \chi_{i_{s+$ $N_1 \cdots N_{c_{r_1}} N_{c_{r_1}} \cdots N_{c_{r_k}}$ Xig's commute $\Rightarrow \chi_{i_1} \in N_{i_1} \cap N_1 \cdots N_{i_{j_1}} N_{i_{j_{j_1}}} = 3e\{, so \chi_{i_1} = e \\ \chi_{i_2} \cdots \chi_{i_{s_{j_1}}} = e.$ By inductive hypotheses, X: = ... = X: s+1 = e. 5 times The claim follows from this. D \$19.2 Classification of finite abelian groups: As a Corollary, we can classify all fimite abalian groups, Here is the first step Theorem 1: Let G be a finite abelian group. It IGI=n is written into its prime hactors $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ (p_i all distinct primes, $a_i \in \mathbb{Z} \quad \forall i$) then $\exists P_i \not\in G$ of order $p_i^{\alpha_i}$ such that $G \simeq P_1 \times \cdots \times P_k$. Furthermore, this decomposition is unique. Brook: First, ve pare the existence of such a decomposition. Let P: E Syl; (G). By construction, IPil = pi^{ai} and P: < G ti because Gis abelian We check P1, ..., Pic satisfy anditions (1) and (2) We start with (2). H:= P....Pi-, Pi+, -. PK < G Vi because G is abelian. Now, P:: Pix ···· × Pi-1×Pi+1×···* PK ->>> Hi ≤ G is a youp houmorphism, so by the first iso theorem Hi ~ (P1×··× Pi-1×Pit1×···× PK)/Ker 4i ~ so $|H_i| |P_1 \times \cdots \times P_{i+1} \times P_{i+1} \times \cdots \times P_{k}| = \frac{n}{p_i^{n_i}}$. As a consequence (IHil, IPil) = 1 Vi => PinHi=Jer Vi. • Let $W = \langle P_{1}, ..., P_{k} \rangle \leq G$. Since $P_{i} \leq W$, we get $p_{i}^{a_{i}} \mid |W| \forall i$ Thus $lcm(l_1^{q_1}, \dots, p_{\kappa}^{q_{\kappa}}) = n = |G| | |W|$, so W=G. By Proproting, Pix-- xPK~G via (x1..., Xk) -> x1---Xk.

• To uniquenes: k is unique since
$$N = p_1^{n_1} - q_k^{n_k}$$
.
Assume $P_1 \times \cdots \times P_k \cong H_1 \times \cdots \times H_k$ for P_1, H_1 promps of order $p_1^{n_k}$.
Note $P_1 \in P_1 \times \cdots \times P_k$ is a $\times \longmapsto (e_1, \dots, e_1, \dots, e_k)$.
Since $|P_1 \times \cdots \times P_k| = N$, we see P_1 is a Sylow p_1 -subgroup of $P_1 \times \cdots \times P_k$.
Furthermore $Sytp_1(P_1 \times \cdots \times P_k) = 3P_1$? Fince $P_1 \times \cdots \times P_k$ is a Lelian.
Similarly $Sylp_1(H_1 \times \cdots \times H_k) = 3H_1$?
For any is morphism $P_1 P_1 \times \cdots \times P_k \longrightarrow H_1 \times \cdots \times H_k$, $|P(P_1)| = |P_1| = P_1^{n_k}$
So $P(P_1) \in Sylp_1(H_1 \times \cdots \times H_k) = 3H_1$?
Similarly, $P_1(H_1) \in Sylp_1(P_1 \times \cdots \times P_k)$, Thus, P_1 induces an ismorphism
 $H_1 \cong P_1$. H_2 . Uniquenes follows.

• From Theorem 1, we need may classifying the possibilities for P, ... PK, ie we are reduced to classifying abelian 1-groups. We'll de this next time!