Lecture XX: Classification of Finite abelian groups I

L

\$20.1 Classification of finite abelian groups:

last time, we took the first step to classify finite abelien youps ,

Theorem 1: Let G be a finite abelian group. It IGI=n is written into its prime hadors $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ (lei all distinct primes, aie & Vi) then] Pi & G of order Pi such that $G \simeq P_1 \times \cdots \times P_k$. Furthermore, this decomposition is unique. (G is the direct product of its Sylaw 1-subgroups: lix...x?k -> li...Pk=G) (n1,...,nk) -> n1...nk Definition 6 is the direct product of subgroups H1, -- - Hk if (0) H: SG ¥i=1,..., k (1) G is generated by H, U... UHk (2) H; ((H1 ... Hi+1 --- Hk) = 3et +i=1,..,k kuy: (2) & Ki ≤ G so ab=bq ¥a∈Hi, b∈Hj i≠j . In yarticular words in K, U--UKk can be expressed as a a with a : e H ; . Remark: The same proof will work if 6 is not abelian but every Sylow p-subproup of G is normal \$p (ic np =1 \$ y dividing [G]). Nilpstent groups (To be defined in a future lecture) will have this property. To finish our classification, we need to classify a selien p-groups (ie P1, ... Pie in Thmi) \$20.1 Classification of finite abelian p-groups: Theorem 2: Let 6 be an abelian p-group, say 161=ph for nz1. Then, there exist a, ..., a k with a, saze ... an such that G ~ 2/ x x 2/ax 2

(so, 9,+...+9k=n) Monorer, K and a,...ak are uniquely determined by G

Remark 1: For notational contentional, we think of $2/2 \times -- \times 2/q_{RZ}$ as additive, is Q = (0, ..., 0) is the neutral element x + y coordinateurise is the group operation $m \cdot x = x + - - + x$ for $m \in \mathbb{Z}_{\geq 1}$.

Remark 2: Sury G = 2/2 ×···× 2/2 . Mat are the properties of a, ..., with the ord(g) = p^{ak} for all gEG because
$$a_1 \le \cdots \le a_k$$
 and $C(S_1, \cdots, S_k) = (CS_1, \cdots, CS_k)$ so $(S_1=0) \Longrightarrow C=p^k$ with os lysa.
Furthermore: $g=(O, \ldots, O, 1)$ has order p^k .
In particular, we know the value of a_k if $G \cong 2/2$ ×···× 2/2 because isomorphisms proserve the order of elements.
Prophisms prover the order of elements.
Prophisms prover the reder of elements.
Prophisms is introde $|G| = p \implies G \cong 2/2$ because it is cyclic of order p.
In particular, the stationart (excision a subjection) by complete induction on x .
Base and: $n=1$ is thread $|G| = p \implies G \cong 2/2$ because it is cyclic of order p.
In particular $k=a_1=1$ are unique.
Inductive Step: We assume the stationart is the for any abelian p-group of order p^m with math.
o let $a_1 = mond \le math order of a geG with ord (g) \neq 1$.
The first a_{2} because $G \neq ief$ so $\exists g \in G$ with $macn$.
If a = monds is such that $ord(T) = p^s$ for one $T \in G^i$
(if p^n is the darget order of an element of G .)
Note first a_{2} because $G \neq ief$ so $\exists g \in G$ with $macn$.
If a = n, we have $G = 2/p_{22}$ with $k=1$ and $a_{1}=n$.
Uniqueues follows because $q = mach \le 1$ or $d(T) = p^s$ for $T \in 2/p_2 \times \cdots \times 2/p_1 f$
because $a_{1} \ldots a_{2}$. This force $a_{1} = a_{1}$ we have $G = 2/p_{2} \times \cdots \times 2/p_{n} f$
we have $G = 2/p_{n} = with k=1$ and $a_{1}=n$.
If a = n, we have $G = 2/p_{n} = with k=1$ and $a_{1}=n$.
Difference follows because $q = mach \le 1$ or $d(T) = p^{2}$ for $T \in 2/p_2 \times \cdots \times 2/p_{n} f$
we cause $a_{1} \ldots a_{2}$. This force $a_{1} = a_{1} + a_{2} \dots = a_{n}$.
In pultular, we can kind $\overline{a_{1}} \cdots \overline{a_{n}} \in G/p_{1}$ of orders $p^{2} \cdots p^{2m}$ magnetized g .
Such that $-\frac{1}{3} \times \cdots \times 3/p_{n}$, ξ generates G/g .

•

Since
$$|H_1 \cdots H_{k-1}| \leq |H_1| \cdots |H_{k-1}| = p^{a_1} \cdots p^{a_{k-1}} = p^{a_1+\cdots+a_{k-1}} = p^{a_1} = |G_{i_k}|$$

we enclude it is an isomorphism by the 1st Isomorphism Theorem.
Thus: $\ker(TL \cap H_{i-1} = 3e)$
 H_{i_k}
Next, we discuss $\underbrace{i=1,\dots,k-1}_{i}$.
Note $\Psi: H_1 \times \cdots \times H_{k-1} \xrightarrow{\simeq} f_{i_k}$ If $x \in H_i \cap H_1 \cdots H_{i-1} H_{i+1} \cdots H_k$
 $(\sigma_i^{a_1}, \dots, \sigma_{k-1}^{a_{k-1}}) \longrightarrow (\overline{s}_i^{b_1} \cdots \overline{s}_{k-1}^{b_{k-1}})$ $\sigma d(\overline{s}_i) = \overline{r}_i^{3i}$
then $x = x_i = x_1 \cdots x_{i-1} \times i_{i+1} \cdots K_k$ with $\kappa_j = \sigma_j^{b_j} \in H_j$ Ψ_j for some $0 \in b_j < a_j$
 $\Rightarrow x_i H_k = K_1 H_k \times k_1 H_k \cdots \times K_{i-1} H_k \times i_{i+1} H_k \cdots H_{k-1} H_{k-1}$
 $\Rightarrow \overline{g_i} = \overline{g_1} \cdots \overline{g_i} = \overline{g_i} \cdots \overline{g_{k-1}} = \overline{g_k} \in G_{H_k}$.
 $\Rightarrow \overline{g_i} = \overline{g_1} \cdots \overline{g_i} = \overline{g_i} = \overline{g_i} = \overline{g_{k+1}} \cdots = \overline{g_{k-1}} = -b_i = b_{i+1} = \cdots = b_{k-1} = 1$
Thus $\chi = \chi_i = \pi_1 \cdot g_i \quad \text{or we mented } f_i \quad \text{show}.$

· Combining Claim 2 and Proprition \$19.1, we get $G \simeq H_1 \times -- \times H_{k-1}$, so the decomproition exists.

It remains to prove claim 1 & show uniqueness. We will de this vert Time.