Lecture XXIII : Semi-direct Products II

Recall: A group G is a semi-direct product of subgroups H and N if () $H \leq G$ and $N \leq G$ Write G = N X H (2) HN=NH=G (3) HINN = 3eCyclin give an action GCN, restricting it to H we get HCN left-action, or equivalently, a group house or phism d: H _____ Aut Gp (N) h → (mj(h) TODAY: We give a different construction of semi-direct products starting from such a group honomorphism &. \$23.1 Cost mating Semi-Lineat Products: Assume we are given two groups H and N, and a group homomorphism $\alpha : H \longrightarrow \operatorname{Aut}_{\operatorname{GP}}(N) := \{ \Psi : N \longrightarrow N : \Psi \text{ queup is morphism } \}$ $Inditions \ h \ \alpha': \ h \ \alpha': \ h \ \gamma': \ h \ \gamma': \ h \ \gamma': \ \alpha': \ \alpha'$ • $\alpha(e_{H}) = id_{N}$ • $\prec (h_1 *_H h_2) = \alpha(h_1) \circ \alpha(h_2) : N \longrightarrow N$ $\left[\begin{array}{c} \alpha(h_1h_2)_{(n)} = \alpha(h_1) \left(\alpha(h_2)_{(n)} \right) & \forall n \in \mathbb{N} \quad \forall h_1, h_2 \in \mathcal{H} \end{array} \right]$ Using & we can define a new binary operation on G = N X H, different than the coordinateurise one. More precessly: $(n_1, h_1) *_{\alpha} (n_2, h_2) = (n_1 \alpha(h_1)(n_2), h_1 h_2)$ Y M, MZEN hihzeH Lemma: The operation * defines a group structure on the set G=NXH. We denote G endowed with this operation by NXH (Hato on N ria d, i.e. $h \cdot n = \alpha(h)(n)$ usuring the notation N X H for the coordinateurise operation. Snoot: We need to check 3 things : (i) the operation defined is associative;

- (ii) there is a neutral element ;
- (iii) every element has an inverse.

(i) Set
$$\xi_{1} = (n_{1}, k_{1})$$
, $\xi_{2} = (n_{2}, k_{2})$, $\xi_{3} = (n_{5}, k_{3})$
 $h_{1}, h_{2}, h_{3} \in H$
 $(\xi_{1}, x_{4}, \xi_{5}) = (n_{1}, d(k_{1})(n_{2}), h_{1}k_{2}) x_{4}(n_{5}, k_{5})$
 $= ((n, d(k_{1})(n_{3})) d(k_{1}k_{2})(n_{3}), (h_{1}k_{2}) h_{3})$
 $= (n, d(k_{1})(n_{3})) d(k_{1}k_{2})(n_{3}), h_{1}(k_{2}k_{3}))$
b) $(k, k, k, k_{3}) = (n, k_{1})(k_{2}, d(k_{2})(n_{3})), h_{1}(k_{2}k_{3}))$
b) $(k, k, k, k_{3}) = (n, k_{1})(k_{3})(k_{3}) + (h_{2}k_{3}))$
 $(h_{1}h_{2})h_{3} = h_{1}(k_{3}h_{3}) + (h_{2}k_{3})(h_{3}) + (h_{3}k_{3})(h_{3})$
 $= (n, d(k_{1})(n_{2})) d(k_{1}k_{2})(n_{3}) = (n, d(k_{1})(n_{3}))(d(k_{1}) \circ d(k_{2}))(n_{3})$
 $= (n, d(k_{1})(n_{2})) (d(k_{1}k_{2})(n_{3})) = n_{1}(d(k_{1})(n_{3})(d(k_{1}))(n_{3}))(d(k_{1})(n_{3}))(d(k_{1}))(n_{3}))(d(k_{1})(n_{3}))(d$

Next, by show that H = N can be viewed as subgroups of NN_RH, and N
is normal in NN_RH:
We consider i; H
$$\longrightarrow$$
 NN_RH and i: N \longrightarrow N NN_RH
h \longrightarrow (e_N, h) \longrightarrow N \longrightarrow N NN_RH
h \longrightarrow (e_N, h) \longrightarrow N \longrightarrow N \longrightarrow N
Peopletin: The maps i, iz are injective group homosophisms, allowing to
to the H and N as subgroups of G=N NN_RH. Turthermore,
(1) H \in G, N \leq G
(2) N \cdot H = G
(3) N \cap H = \langle e_i:= (e_N, e_N) \rangle
Such: That, we check i, is a group homosophism :
(e_i, h) *_n (e_i, h_i) = (e_i × (h_i)(e_i), h_ih_i) \in (e_ie_i, h_ib₂) $=$ (e_i, h_ib₂)
 $=$ (i, i, e_i) *_n (e_i, h_i) = (e_i × (h_i)(e_i), h_ih₂) $=$ (e_ie_i, h_ib₂) $=$ (e_i, h_ib₂)
 \leq i₁ (h₁) *_n i₁ (h_i) = i₁ (h_ih₂) \forall h_i, h₂ \in H
Nort, we check i₂ is a group homosophism :
(n₁, e₁) *_n i₂ (n₂, e₁) = (n₁ × (e₁) (n₂), e₁e₁) = (n₁ · n₂, e₁)
 \leq i₂ (n₁) *_n i₂ (n₂) = i₂ (n₁n₂) \forall n₁, n₂ \in N
 \leq by construction $e_{in}(e_{i}, e_{2})$, so Kee (i₁) = $\frac{1}{2}e_{i}$ t, Kee (i₂) = $\frac{1}{2}e_{i}$ t.
(h) H \leq G is i_{1} (h₁) (n₂) i_{1} (h₁) \leq G
 \leq (hubble i_{2} (n) \leq G
 \leq (hubble i_{2} (n) \leq G
 \leq (h₁) (n₁) (n₁) i_{n} (h₁) (n₂) i_{n} (n₁) i_{n} (n₁) i_{n} (n₁) i_{n} (h₁) (n₂) i_{n} (h₁) (n₂) i_{n} (h₁) (n₁) i_{n} (h₁) (n₂) i_{n} (h₁) (n₁) i_{n} (h₁) (n₂) i_{n} (h₁) i_{n} (h₁) (n₁) i_{n} (h₁) (n₂) i_{n} (h₁) (n₂) i_{n} (h₁) (n₁) i_{n} (h₁) (n₂) i_{n} (h₁) i_{n} (h₁) (n₂) i_{n} (h₁) i_{n} (h₁) i_{n} (h₁) i_{n} (h₁) (n₂) i_{n} (h₁) i_{n} (h₁) (n₂) i_{n} (h₁) i_{n} (h₁) i_{n} (h₁) i_{n} (h₁) i_{n} (h₁) (n₂) i_{n} (h₁) i_{n} (h₁) i_{n} (h₁) i_{n} (h₁) (n₂) i_{n} (h₁) i_{n} (

$$=$$
 N·H = N × H as sets. 4

(rollary gim N, H groups & x: H → Aut_{Gp} (N) gp hmuniphism, the group NXH is the semi-direct product of N < NXH and H < NXH. <u>Note:</u> Proprition => NH = HN = NXH by Lemma 22.1.

\$23.2 Equivalence of two constructions:

<u>Our next gool</u>: show both constructions of semi-direct products (internal and external) • Let \mathcal{G} be a group which is a semi-direct product of two groups H&N (ie, $H \leq \mathcal{G}$, $H \cdot N = N \cdot H = \mathcal{G}$, $N \cap H = 3 \text{ ef}$) Let $\alpha : H \longrightarrow \operatorname{Aut}_{\operatorname{GP}}(N)$ be the group homosphism induced by the orgingative act of H on N, is $\alpha(h)(n) = h \cdot h^{-1} \in N$ the H theN. Next, we get $G = N \times \mathcal{A}_{\alpha}$ H as in Lemma 323.1

 $\frac{g_{noof:}}{f((n_1,h_1) *_{\alpha} (n_e,h_2))} = f((n_1 \alpha(h_1)(n_e),h_1h_2) = n_1 \alpha(h_1)(n_e) \cdot h_1h_2}{= n_1 h_1 n_2 h_1^{-1} h_1h_2 = n_1 h_1 n_2 h_2 = f((n_1,h_1)) f((n_e,h_2))}$

Next, we state a brollary of the 3rd Isomorphism Then when Go HiN MINI-365
Brollony: Let G be a semi-strict product of H a N. Then, the natural projection

$$E: G \longrightarrow G_N$$

 $s \longmapsto g_N$
restricted To H induces an isomorphism $E_{[H]}: H \longrightarrow G_N$
 $h \longmapsto hN$
Broof: $E_{[H]}$ is proof humorphism
 $G = HiN$ so $E_{[H]}$ is surjective
 HNN so $E_{[H]}$ is surjective
 $Q:$ What does this mean?
A: The every cost $\overline{g} \in G_N$, we can hind a upmentative $\overline{g} = \overline{v_g} N$ such that
 $ord_G(\overline{v_g}) = ord_{g_N}[\overline{g}]$
 $\overline{v_g}_{3d_2} = \overline{v_g}_1 \overline{v_{g_2}}$
Namely: $\overline{v_g} = (\overline{E}_{[H]})^{-1}(\overline{g}) \in H \subseteq G$.
Summary II: $N \subseteq G$ and $H \leq G$
 $HNN = 4e_S$
 $U = \frac{1}{2} \frac{1}{$

Next time : Compute Aut Gp (N) his some groups N