Last time us introduced comproition series and Jordan - Hölder series.

- A <u>comprotion series</u> of a group G is a descending sequence of normal subgroups: $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_n = 30$
- (Remember: G_{j+2} und not be normal in G_j $\forall j$) • Graded pieces associated to Σ : $g_{i} \in \{G\} = G_{i} \in \{G\} = G_{i+1}$ • Length of $\Sigma = n$.
- . Σ' is a <u>ultimement</u> of Σ if Σ' is a composition series obtained from Σ by adding normal subgroups (equivalent Σ is obtained from Σ' by omitting Terms). In particular, we have length $(\Sigma) \leq length (\Sigma')$
- Σ, is <u>equivalent</u> To Σ₂ if (1) length (Σ,) = length (Σ₂) (2) they have the same graded pieces (possibly up to permutation) <u>Exemple:</u> $\frac{1}{4\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$
 - $\frac{(7/2)^2}{(7/2)^2} = \frac{7}{2} = \frac{1}{2} = \frac{$
- . Z is strict if $q_i = (G) \neq 3et \forall i=0, ..., m-1$. Equivalently, $G_i \neq G_{i+1} \forall i$.
- . A Jordan Hölder series is a strict emposition series that is maximal relative to rehomement among all strict emposition series. Meaning: Σ is J-H if struct and for every Ξ' strict and from them Ξ we have $\Xi' = \Xi$.
- \$ 29.1 Characterization & existence of J-H series:

Limma: Let G be a group. A strict emportion series Z:G=Go F... FGm=3rt is Jordan-Hölden ib, and only if, each Gi is simple $\forall i=0,...,m-1$ Gi+1 <u>Broch</u>: This follows from the 2nd Isomorphism Theorem (=>> We prove the entraportion. If Gi is not simple for some i. Then $\exists N$ m-tuinial proper normal subgroup of Gi. . By the Second Isomorphism Theorem applied

since By the Lemma, we have
$$Ni_{Ni+1}$$
 is simple $\forall i=0, ..., n-1$.
Thun, $\Sigma:G=G_0$ by $G_1=N$ by $G_2=N$, P_1 $P = G_{m-1}=N_m=3eF$ is a strict
composition since for G . Since, by construction, Gi_{Gi+1} is simple $\forall i$, the same Lemma
consumes that Σ is Jordan-Hölder.

329.2 Uniqueness of J-H series:

Our first result discussed how to build equivalent achenements of 2 composition series. Theseen (Schneier): Let Z, and Zz be two emposition series of a group G. Then, there exist refinements Z' & Z' of Z, & Zz, respectively, such that Z', is equivalent to Z'z. Leollary: Any 2 J-H series sha quer group & an equivalent. Bassf: Let Z, Zz J-H series of G. The Theorem produces ubinements Z', of Z, 2'2 + 2, with Σ'_1 is equivalent to Σ'_2 . But Z, & Zz an maximal anna strict comproition since of G. This means that bori= 32 E'i is either equal to E' or E'i is NOT strict.

Thus, if Z, = G = Go & G, & Gz & ... & G= Ses then, recessarily, Z', has the form Σ'_{1} : $G: G_{0} = G_{0} = \cdots = G_{0}$ $P_{1} = G_{1} = \cdots = G_{1}$ $P_{1} = G_{2}$ $\cdots = G_{1}$ and so m... ke, Cermes

The same enclusion applies To E'z.

In particular, after removing repetitions, Z' & Z' have the same non-trivial graded pieces because E', & E' are equivalent. These are precisely the same graded pieces as E, & Ez. $3g_{ij}\xi_{i}(G) = \{g_{ij}\xi_{i}(G) : o\xi_{j} \le longth(\xi_{i}) - 1 \text{ with } g_{ij}\xi_{i}(G) \neq 3e_{i}\} \text{ for } i = 1, 2.$ 50 In particular, $legth(\Sigma_{z}) = legth(\Sigma_{z}) = 3 \gamma_{j}^{\Sigma_{1}}(G) = 3 \varsigma_{j}^{\Sigma_{2}}(G)$

Example:	Σ, :	4/62 Vx 4/32 2 308	both one J.H service
	ξ2 :	2/62 7 2/22 7/05	o th 1st
Associated	graded	pieces with nopect to E, :	3 7/22 , 7/32 }
		٤٢	5 2/32 , 2/22/

•

Since
$$K_{j+1} \triangleleft K_j = K_j \cap H_i \leq K_j$$
, we have $R_{ij} \leq K_j = \psi_i \forall j$
• Analogously \mathbb{T} claim z we have $\mathcal{R}_{iH,j} \triangleleft R_{ij}$
• $\mathcal{R}_{n,j} = K_{j+1} = \mathcal{R}_{0,j+1} \quad \forall j = 0, ..., m-1.$
We get $G = K_{0,0} = K_0 = H_0 \Rightarrow \mathcal{R}_{1,0} \Rightarrow \mathcal{R}_{2,0} \Rightarrow \cdots \Rightarrow \mathcal{R}_{n,0} = K_1$
 $K_1 = \mathcal{R}_{0,1} \Rightarrow \mathcal{R}_{2,1} \Rightarrow \cdots \Rightarrow \mathcal{R}_{n,1} = K_2$
 $K_z = \mathcal{R}_{0,z} \Rightarrow \cdots$
 \vdots
 $K_{m,0} = \mathcal{R}_{0,m} \Rightarrow \cdots \Rightarrow \mathcal{R}_{n,m-1} = K_m$

We let Σ'_{2} be the above composition series after economing $\mathcal{R}_{0,1}$, $\mathcal{R}_{0,2}$, ..., $\mathcal{R}_{0,m-1}$ In particular Σ'_{2} refines $Z_{2}($ all K_{i} 's an part of $\Sigma'_{2})$ a lengh $(\Sigma'_{2}) = m(n+1) - m = nm$ Thus, to prove Σ'_{1} a Σ'_{2} are equivalent, we need to identify their associate graded pieces:

Both Claim 2 & 3 an ensequences of Zassenhaus' Lemma (below) In the proof there are 4 groups $\&_{i'j} = (H_i \cap K_j) H_{i+1}$ $R_{i'j} = (H_i \cap K_j) K_{j+1}$ $\&_{i'j+1} = (H_i \cap K_{j+1}) H_{i+1}$ $B_{i+i'j} = (H_{i+1} \cap K_j) K_{j+1}$ where $H_{i+1} \leq H_i$ $R_i K_{j+1} \leq K_j$ For notational convenience, we write $H := H_i \supseteq H_{i+1} = :H^1$ $K_{:=} K_j \supseteq K_{j+1} = :K^1$

. Next HAK' & HAK by LEWIL, HAK & HAK, so (HAK')(HAK)
$$\in$$
 HAK'
by Lewing §22.1.
(Lain3: HAK' & HAK & KAH' & HAK \Rightarrow (HAK')(KAH') \leq HAK
3C/ KEHAK', $g \in K'AH$, $k \in HAK \Rightarrow K \times g K^{-1} = (K \times K^{-1})(K \oplus K^{-1})$
 $\times EHAK', KEHAK \Rightarrow K \times K' \in HAK' = KAK' = HAK' = KAK' = KA$

By the 3^{cd} Iso theorem combined with Claims 4 & 5, we get

$$\frac{(H \cap K) H'}{(H \cap K') H'} = \frac{H \cap K}{1} = \frac{H \cap K}{1} = \frac{H \cap K}{1} (H' \cap K)(K' \cap H)$$

$$\frac{(H \cap K') H'}{(H \cap K') H'} = \frac{H \cap K}{1} = \frac{H \cap K}{1} (H' \cap K)(K' \cap H)$$

$$\frac{(H \cap K') H'}{(H \cap K') H'} = \frac{H \cap K}{1} = \frac{H \cap K}{1} = \frac{H \cap K}{1}$$

$$\frac{(H \cap K') H'}{1} = \frac{H \cap K}{1} = \frac{H \cap K}{1}$$