Lecture XXX: Solvable groups

l

Kevall We introduced the notion of a comprisition series of a group G

Comprition series = descending chain of normal subgroups
 ∑: G = Go ØG, Ø... ØGn = 3e}

. Jorden - Hölder veries : strict composition series (ie all F) & maximal with negect to achinements.

Certain comprition series can be constructed via " commutators".

§ 30.1 Connuta tozs:

\$ 30.2 Commutator Series:

Alternative name : Derived series.

The unit "durined" has changed its maxing there days. We have things²
like "durined calippins," durined hamilities, "durined Algebraic Geometry", stee
So it is probably better to use "amoutation series" bothis enstruction.
Let G be a yang. Take
$$G^{(n)} = G$$
, $G^{(1)} = [G, G]_{-} = [G^{(n)}, G^{(1)}],...$
 $G^{(2n+1)} = [G^{(n)}, G^{(2n)}]$,...
No obtain a lyberaps inhial basis
 \sum^{n} : $G = G^{(n)} \approx G^{(1)} \approx G^{(2)} \approx ...$
Definition: The series Z is called the commutative varies of G.
 M The series Z may not and in beg down if G is brack.
Lemma : For any yoang H, the probable series when howevershime tom H
there precisedy, is A is any action group and $F: H \longrightarrow A$ is a part howevershime tom H
then $[H:H] \subset Ker(F)$ a $H \xrightarrow{F} A$
 $T \stackrel{K}{=} \frac{G}{2} H^{-1}$
Turthermore, if $A = \frac{H}{H_{(M)}}$ a $F = R$, then $Kee(F) = [H,H]$.
Second: Red is your $E \times (H,H)$, $\Im(H,H) = e(H,H)$ in $\frac{H}{(H,H)}$. Indeed:
 $x (H,H) \Im(H,H) (x (H,H))^{-1} (y (H,H))^{-1} = x \Im^{-1} y^{-1} (H,H) = (x,y) (H,H) = e(H,H)$
So $\frac{H}{(H,H)} = is abalian.$
If $(x,y) = [F(x), F(y)] = e$ because A is action
 $The (x,y) = [F(x), F(y)] = e$ because A is action
 $The (X,Y) = E(Ky) = E + Since Fer + is a party prove $x,y \in H$
 $H = M + M + Since A + Since Fer + Since A + Sin action
 $T + (X,Y) = [F(x), F(y)] = e$ because A is action
 $T + (X,Y) = [F(x), F(y)] = e$ because A is action
 $T + (X,Y) = E(Ky) F(y)] = e$ because A is action
 $T + (X,Y) = (Ker F + Xx) \in H - Since Fer + is a party (H,H) = Ker(F).
By the $I^{(2n)}$ Is manyly firme fraction through $\frac{H}{(H,H)}$ as an electron.
 $T + (X,Y) = Ker F + Xx) \in H$. Since Fer + is a party (H,H) = Ker(F).
By the $I^{(2n)}$ Is manyly firme fraction through $\frac{H}{(H,H)}$ is a calibration.
 $T + (X,Y) = Ker F + Xx) \in H$. Since Fer + is a party (H,H) = Ker(F).
By the $I^{(2n)}$ Is a calibration fraction through $\frac{H}{(H,H)}$ as an electron.
 $\frac{K(H,H)}{(H,H)} = Ker(F)$ is a first firme fraction through $\frac{H}{(H,H)}$ is a calibration.
 $F = (X,Y) = (X,Y) = (Y,Y) \in H$. Since Fer + is a$$$

$$\frac{5}{9} \frac{5}{8} \frac{5}$$

The term "solvable" signated in the encept of "solvability by radicels of a polynmial equation". You will learn more about it in Houses Algebra II (Galois Theory), but here is a rough dictionary To illustrate this:

•
$$a x^{2} + b x + c = 0$$
 can be solved $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ in terms of $(a \neq 0)$
• polynomials in $a_{1} + b_{2} = c$ (eg $b^{2} - 4ac$)
• radicals (square noots) (eg $\sqrt{b^{2} - 4ac}$)
The mason for this will term out to be $\frac{3}{22} = S_{2}$ is solvable

• S₃ ≅ D₆ = 3 = s² = 1 , srs = r⁻¹>
(1,2,5)
$$\stackrel{\checkmark}{\leftarrow} \stackrel{\checkmark}{\leftarrow} r$$

(12) $\stackrel{\leftarrow}{\leftarrow} r$ S
(12) (12) (12) = (213) = (123)⁻¹ , (125)³ = 1 , (1,2)² = 1
{ $Y(sri) = (12)^{5} = (1 + s)^{5} = (1$

- · Sy is also solvable (We'll see this in a fature lecture). Read about solving leque 4 equations if you are interested.
- S5 (& Sn for all n25) are not solvable. This will imply that a general degree 5 equation has no "explicit solution by radicals" like the mes described above.