(Lecture XXXIII: Nilpotent Groups II Recall : Inspecties of solvable and nilpotent promps: (1) Nilpstert => Solvable (NOT currently) (2) Abelian => Nilgstent IGI = pⁿ n = 1 prime => Nilpstant (3) Sub - a quotient groups of a solvable (acapetiscly, vilpstent) group are solulle (nojectively, nil potent). NAG & GN solulle => G solulle (4) A < 2(0) & 6/A nilpotent => G nilpotent. (5) TODAY'S GOAL : Characterize finite Nilpstent groups. Main Theorem : Any finite nilpotent group G is a size & product of p-groups (the primes can very). These 1-groups are Sylow P-subgroups of G. \$ 33.1 A useful lemma: Lemma: Let 6 hear group and KEG subgroup. If [G:K] = K, then K = G Bussof: YSEG, LEK gkg-'k' E[G:K] =K => gkg'k'EK Thus, skg-lek, so gkg-lek tgeG. This implies KSG. Definition: Let G be a group and HSG a subgroup. The wormalizer of H in G is $N_{G}(H) := 3g \in G : 3Hg^{-1} = HS$ Remark: NG(H) is a subproup of G & H S NG(H) Useful Lemma: Let G be a nilystent group and H & G a projer sulgroup. Thus, we have HGNGH. Brook: As G is nilpstent, we have a comprition series Z: G=K. PK, PK2 P ···· PKm=3ef

such that [G:Ke] = Keti fr l=0,1,..., n-1 (Example: E lower contral series)

By the Lemma [G:ke] = Ket1 = Ke = Ke = G.

Let G_{ℓ} be the subgroup $\circ F G$ generated by $H \& K \varrho$. By Lema § 22.1 $G_{\ell} = H \cdot K \varrho = K \varrho \cdot H$ <u>(laim:</u> $G_{\ell+1} \boxtimes G_{\ell}$ for all $\ell = 0, ..., n-1$

Assume the claim is true. This gives :

 $G_0 = G \not\supseteq G_1 \not\supseteq G_2 \not\supseteq \cdots \not\supseteq G_m = H$

Since $H \neq G \neq k \in 30, ..., m-1$ with $G_k \neq G_{k+1} = ---=G_m = H$ Then, $H \not\supseteq G_k$ implies $G_k \subseteq N_G(H)$. Hence $H \not\subseteq N_G(H)$, as we wanted

The claim in the proof of the Use feel Lemma is a general fact that we now prove. Proprotion: Let G he a group, N2 = N, two normal subgroups of G with [G:N,] = N2 Lot H ≤ G le a mbgroup. Then, N2. H is normal in N1. H. Jusof: Since N; QG for i=1,2 Lemma \$22.1 millies N; H ≤ G is a subgroup. We need to show YaEN, H& LENZH aba'ENZH. It suffices to treat 2 cases, namely when a EN, & when a EH. CASELI REHEN, H If b=nzx with nzENz, xEH then aba' = anzxa' = anza'axa' ENzH. E Nz (N2 4 G) (9, x E H) CHSEZ: AEN, EN, H If $b \in N_2 H$, then $[b':a] = b'aba' \in [G:N_1] \subseteq N_2 \implies aba' \in bN_2 \subseteq N_2 H$ N2H=HN2 In both cases we have a bat' EN2H, so N2H & N, H because N, H is generated by N, & H. \$ 33.2 Self-normalizing lomma hor Sylow subgroups: Lemma: Let G be a finite youp & p a prime dividing IGI. Let PE Sylp IG). Let LSG be a subgroup. If $N_{G}(P) \leq L \leq G$, then $N_{G}(L) = L$.

Supp: We have
$$P \leq W_{G}(P) \leq L$$
 by comptime. In perturbat, $P \leq V_{G}(P)$
Since maximal power of P dividing $|L|$ is $|P|$ because $P \leq L$.
Let $g \in N_{G}(L)$. Then, $P \leq L$ a $g Pg^{-1} \leq gLg^{-1} = L$ so $P, gPg^{-1} \in SyP_{L}(L)$
In particular, by Sylow Them (2), $\exists l \in L$ with $P = L(g Pg^{-1})L^{-1} = (lg)P(lg)T^{-1}$.
This means $Lg \in N_{G}(P) \leq L$, so $g \in L^{-1}L = L$.
We enclude $N_{G}(L) \leq L$. Since $L \in N_{G}(L)$, we get equality D
533.5 Nein Theorem:
Theorem: Let G be a finite group. The following enditions are equivalent.
(1) G is mightent
(2) Every Sylow p -subgroup is normal.
(3) G is is isomorphic to a lived product of p -groups.
Supp: $(1) \Longrightarrow (2)$: We assume G is milpetint a fixe $P \in Syl_{F}(G)$ for p preme
with $g \mid |G|$. Let $H = N_{G}(P)$. We have two producting is
(1) $P \leq N_{G}(H)$ by Using Lemma 533.1
(2) $H \subseteq N_{G}(H)$ by Using Lemma 533.2
(3) $H \subseteq N_{G}(G) \leq H \leq G \approx M_{G}(H) = H$ by Lemma 533.2
(4) $P \leq N_{G}(G) \leq H \leq G \approx N_{G}(H) = H$ by Lemma 533.2
(5) $\frac{1}{1} L |G| = p_{1}^{n_{1}} \cdots p_{n_{K}}^{n_{K}}$ while $Syl_{G}(G) = {Sis} P_{1} = 1, \dots, k$ (Pi $\leq G$
Then, $S_{1} \times \cdots \times S_{K} \xrightarrow{\Psi} \in G$ is a group ismorphism.
($N_{1} \times \cdots \times N_{K}$) $\longmapsto N_{1} \times N_{G}(P_{1} = H \in G)$ for sing maxames.
Lemma 5131 $\Rightarrow ab \geq h$ Martic, $\log p_{1} = h$ is a group ismorphism.
($N_{1} \times \cdots \times N_{K}$) $\longmapsto N_{1} \times N_{G}(P_{1} = h)$ is a mightime to via measure $\Rightarrow P$ iso
($S_{1} \to (L_{1})$; Assume $G = P_{1} \times F_{2} \times \cdots \times F_{2}$ when $|P_{1}|=h_{1}^{N_{1}}$ for the prime
 $q_{1} \cdots q_{K}$ (all distinct) and $m_{1}, \cdots \times N_{K}$ for sing measure $S = P$ iso
 $q_{1} \cdots q_{K}$ (all distinct) and $m_{2}, \cdots \times N_{K}$

Recall that p-yongs an nilystat, so we know all
$$3i$$
's an nilystant.
Thus, to prove the stationant we must show that direct product of nilpstant yongs
is nilpstat. It's month to prove it for $l=2$. The general coor follows from this one,
embined with an easy induction. We do this core is a submate Proposition \Box
Proposition: Let $6i a 6e$ be nilpstant yongs. Thus, $6i \times 6e$ is also nilpstant.
Beoph: Since $Gi \in 6e$ an nilpstant yongs. Thus, $6i \times 6e$ is also nilpstant.
Beoph: Since $Gi \in 6e$ an nilpstant, we can find a composition series:
 $\sum_{i=1}^{i} G_i = H_0 \oplus H_i \oplus \dots \oplus H_g = 3et$ with $L6: H_e] \in H_{eti}$ $\forall Reo, i, \dots, s-i$.
 $\sum_{i=1}^{i} G_e = K_0 \oplus K_i \oplus \dots \oplus K_e = 3et$ with $L6: K_e] \subseteq K_{eti}$ $\forall Reo, i, \dots, s-i$.
Take $\sum_{i=1}^{n} G_e = L_0 \oplus G_i \times K_i \oplus G_i \times K_e \oplus \dots \oplus G_i \times K_e \cong G_i \oplus H_i \oplus H_e \oplus \dots \oplus H_e = 1eting$
 i_{i} i_{i}