Lecture XXXIV : Symmetric and Alternating Groups

l

\$34.1 The Symmetric group Sn:

$$\begin{array}{c} \begin{array}{c} \underbrace{\operatorname{RecMt}}{\operatorname{Sn}} & \operatorname{Sn} & \operatorname{Icn} + \operatorname{Icheloving} providing sets \\ \hline 0 & f(i_1,\ldots,i_k) ; & 1 \leq i \leq j \leq n \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \leq j \leq n \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \leq j \leq n \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \leq i \\ \hline 0 & f(i_j = (i_j)) & 1 \\ \hline 0 & f(i_j = (i_j$$

\$ 34.2 The sign of a permutation:

We ansider a function of n variables $f: \mathbb{Z}^n \longrightarrow \mathbb{Z}$ so we can evaluate $f_{(X_1, \dots, X_n)}$ We define the function $T: S_n \longrightarrow \operatorname{Aut}(Y_1 f: \mathbb{Z}^n \longrightarrow \mathbb{Z}Y)$ Set $\sigma' \longmapsto (T(\sigma): f \longmapsto T(\sigma)f_{(X_1)} = f(X_{\sigma_{(1)}}, \dots, X_{\sigma_{(n)}}))$

where
$$\underline{X} = (X_1, \dots, X_n)$$
.

Note: 3F: 2° -> 2 } is a group under + induced by printwise evaluation. We also have a pointwise multiplication on thes set.

Indeed:
$$(f+g)_{(\underline{X})} = f_{(\underline{X})} + g_{(\underline{X})} \quad \forall \underline{X} \in \mathbb{Z}^{n}; \quad \mathfrak{O}_{(\underline{X})} = constant great function; inverse of $f = -f$.$$

$$\underbrace{\operatorname{Lemma}_{I}: \operatorname{T}_{i} \text{ is a group humorphism}}_{I_{i} \text{ particular, }\overline{\operatorname{I}_{i}(id)}= id m \text{ functions}} \quad a \quad \operatorname{Sn}_{i} \mathbb{C}^{2} \left\{ f: \mathcal{Z}^{n} \longrightarrow \mathcal{Z} \right\}$$

$$\underbrace{\operatorname{Supp}_{:} \operatorname{T}_{i} \left(\sigma_{0} \mathcal{Z} \right) \left(f \right)_{(\underline{X})} = f\left(\times_{\sigma_{0} \mathcal{Z}(i)}, \dots, \times_{\sigma_{0} \mathcal{Z}(i)} \right) = \overline{\operatorname{I}_{i}}_{(\sigma)} \left(\left(\times_{\mathcal{Z}(i)}, \dots, \times_{\mathcal{Z}(i)} \right) \right)$$

$$= \operatorname{T}_{i} \left(\sigma_{0} \right) \left(f \left(\times_{\mathcal{Z}(i)}, \dots, \times_{\mathcal{Z}(i)} \right) \right) = \operatorname{T}_{i} \left(\sigma_{0} \right) \left(\operatorname{T}_{i} \left(\mathcal{Z}_{i} \right) \left(f \right)_{(\underline{X})} \right)$$

$$\underline{\mathbf{F}}_{\mathbf{X}}: \mathbf{F}_{\mathbf{X}} = \mathbf{X}_{\mathbf{X}} \qquad \overline{\mathbf{T}}(\mathbf{\sigma}_{\mathbf{\sigma}}\mathbf{\delta})(\mathbf{F}) = \mathbf{X}_{\mathbf{\sigma}_{\mathbf{\sigma}}\mathbf{\delta}}(\mathbf{I}) = \overline{\mathbf{T}}(\mathbf{\sigma})(\mathbf{T}(\mathbf{\delta})(\mathbf{X}_{\mathbf{1}})) = \overline{\mathbf{T}}(\mathbf{\sigma})(\mathbf{T}(\mathbf{\delta})(\mathbf{F})).$$

Lemma 2: (1) The action respects the + e · m } $F:\mathbb{Z}^n \longrightarrow \mathbb{Z}$ $\nabla_{\bullet}(f+g) = \nabla_{\bullet}f + \nabla_{\bullet}g$ (2) If $c\in\mathbb{Z}$ enstant $\nabla_{\bullet}(cf) = c(\nabla_{\bullet}f)$

$$\frac{g_{roof:}}{g_{roof:}} = \sigma \cdot (f + g)_{(x)} = (f + g)_{(x} = (f + g)_{(x)} + \sigma_{(x)} + \sigma_{(x)} + g_{(x)} + g_{(x)} + g_{(x)} + \sigma_{(x)} + g_{(x)} + g_{(x)}$$

Same idea works for ...

$$a - c e^{(\vec{x})} = (c e)^{(x_{a^{(1)}}, \dots, x_{a^{(N)}})} = c e^{(x_{a^{(1)}}, \dots, x_{a^{(N)}})} = c (a \cdot e)^{(\vec{x})} \cdot a^{(\vec{x})}$$

Proposition: Let n > 2. Then, \overline{J} unique surjective your homomorphism $\mathcal{E} : S_n \longrightarrow J^{\pm} (J \cong \mathbb{Z}/2\mathbb{Z})$ such that every transposition \overline{C} has $\mathcal{E}(\overline{C}) = -1$. <u>Broof:</u> We consider the function $\Delta(x_1, \dots, x_n) = \prod_{1 \le i \le j \le n} (x_i - x_j)$

Take
$$G = (rs)$$
 with $r.
 $Q:$ What is $G \cdot A$?
 $(G \cdot A)_{(\underline{x})} = \prod_{1 \leq i \leq j \leq n} (x_{G(j)} - x_{G(i)})$ We separate the factors involving r, s
 $(G \cdot A)_{(\underline{x})} = \prod_{1 \leq i \leq j \leq n} (x_{G(j)} - x_{G(i)})$ We separate the factors involving r, s
 $(G \cdot A)_{(\underline{x})} = \prod_{1 \leq i \leq j \leq n} (x_{G(j)} - x_{G(i)})$ We separate the factors involving r, s
 $(G \cdot A)_{(\underline{x})} = \prod_{1 \leq i \leq j \leq n} (x_{G(j)} - x_{G(i)}) = (x_{j} - x_{i})$
 $(G \cdot A)_{(\underline{x})} = \prod_{1 \leq i \leq j \leq n} (x_{G(j)} - x_{G(i)}) = (x_{j} - x_{i})$ so the formula of the separate the factors involving r, s
 $= r \cdot x_{G(i)} - x_{G(i)}) = (x_{g} - x_{r}) = -(x_{g} - x_{j})$ so the formula of the separate in factors
 $= r \cdot x_{G(i)} - x_{G(i)}) = (x_{j} - x_{j}) = -(x_{g} - x_{j})$ so the separate inverses in factors
 $\{ \cdot i = r < 3 < (x_{G(j)} - x_{G(i)}) = (x_{j} - x_{j}) = -(x_{i} - x_{i})$ where $r \cdot r - r_{i}$ is $r < r_{i}$ is $r < r_{j} = r < r_{i}$ is $r < r_{i}$ in $r < r_{i}$ is $r < r_{i}$ is $r < r_{i}$ is $r < r_{i}$ is $r < r_{i}$ in $r < r_{i}$ is $r < r_{i}$ in $r < r_{i}$ is $r < r_{i}$ is $r < r_{i}$ is $r < r_{i}$ in $r < r_{i}$ is $r < r_{i}$ in $r < r_{i}$ is $r < r_{i}$ in $r < r_{i}$ in $r < r_{i}$ is $r < r_{i}$ in $r < r_{i}$ in $r < r_{i}$ is $r < r_{i}$ in $r < r_{i}$ is $r < r_{i}$ in $r < r_{i}$ in $r < r_{i}$ in $r < r_{i}$ in $r < r_{i}$ is $r < r_{i}$ in $r < r < r_{i}$ in $r < r_{i}$ in $r < r_{i}$ in $r < r < r_{i}$ in $r < r_{i}$ in $r < r_{i}$ in $r < r_{i}$ in $r < r < r < r_{i}$ in $r < r < r < r_{i}$ in $r < r < r < r < r_{i}$ in $r < r < r < r < r_{i}$ in $r < r < r$$

$$\nabla \cdot \Delta (x) = -\Delta (x)$$

We define $\mathcal{E}(\sigma)$ be the sign ± 1 such that $\sigma \cdot \Delta = \mathcal{E}(\sigma) \Delta$ for each permutation J. In particular, E(G)=-1 46 transportion.

Since $T(\sigma_0 \sigma) = T(\sigma) \circ T(\sigma) \Rightarrow T(-\Delta) = -\sigma \cdot \Delta \quad \forall \sigma \in S_n$ we an clude that E is a group house phism. Note E(12)=-1 & E(id)=1. Since Sn is generated by transportions & E(ij) = -1 Vi×j, we conclude that E is uniquely determined from this andition it it is a group hannorphism. D

Remark: If
$$\sigma = \sigma_1 \circ \cdots \circ \sigma_m$$
 is a product of transpositions, then $\varepsilon(\sigma) = (-1)^m$.
Definition: We say $\sigma \in S_n$ is even if $\varepsilon(\sigma) = 1$, and odd if $\varepsilon(\sigma) = -1$

Constants:
$$E((i_1, \dots, i_m)) = (-i)^{m-1}$$
 $\forall m \ge 1$
Final: $(i_1, \dots, i_m) = (i_1i_2) \dots (i_{m-2}i_{m-1})(i_{m-1}i_m)$ is a publicit of $m-1$
menty transportion
 $\underbrace{\text{ssn.s. The Alternating group :}$
 $\underbrace{\text{Delimitin: The alternating group An} = Ker E, is the set of even permutations
 $\underbrace{\text{fordlary: An is a normal subgroup of S_n = Ker E, is the set of even permutations
 $\underbrace{\text{fordlary: An is a normal subgroup of S_n = Ker E, is the set of even permutations
 $\underbrace{\text{fordlary: An is a normal subgroup of S_n = Ker E, is the set of even permutations
 $\underbrace{\text{fordlary: An is a normal subgroup of S_n = Ker E, is the set of even permutations
 $\underbrace{\text{fordlary: An is a normal subgroup of S_n = Ker E, is the set of even permutations
 $\underbrace{\text{fordlary: An is a normal subgroup of S_n = Ker E, is the set of even permutations
 $\underbrace{\text{fordlary: An is a normal subgroup of S_n = Ker E, is the set of even permutations
 $\underbrace{\text{fordlary: An is a normal subgroup of S_n = Ker E, is the set of even permutations} A_n$
 $\underbrace{\text{fordlary: An is a normal subgroup of S_n = Ker E, is the set of even permutation A_n is the set of the set of$$$$$$$$$

(2) Fix noss. We show any 2 3-cycles are conjugate in An by explicit computation.

$$\begin{split} \Im \{f_{i}, \sigma(x) = x \quad \Rightarrow \quad x \notin \{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\} \quad \Rightarrow \quad \delta(x) = x \quad by construction G \\ Then, \quad \delta \sigma \delta^{-1} \sigma^{-1}(x) = \delta \sigma \delta^{-1}(x) = \delta \sigma \sigma(x) = \delta(x) = x \quad , ie \quad x \in X^{\sigma^{1}} \\ \quad a_{2} \notin X^{\sigma} \quad \forall nee \quad \sigma(a_{2}) = a_{3} \notin a_{2} \\ \quad a_{2} \notin X^{\sigma} \quad \forall nee \quad \delta \sigma \delta^{-1} \sigma^{-1}(a_{2}) = \delta \sigma \delta^{-1}(a_{1}) = \delta \sigma(a_{1}) = \delta(a_{2}) = a_{2} \quad D \\ \hline \\ \Im T_{n} \quad be analogo and on the stand of the theory burght be z, \quad to τ is a gauged of disjoint to show burght be z, so τ is a gauged of disjoint to show the stand of the show the show the stand of the show the sh$$

\$34.4 A presentation for Sn (sptimal): 7 <u>Thuren:</u> $S_n = \left\langle s_1, \dots, s_{n-1} \right\rangle \left| \begin{array}{c} s_i^2 = e \quad \forall i = 1, \dots, n-1 \\ s_i s_j^2 = s_j s_i \quad \text{if } \{i - j\} > 1 \\ s_i s_{i+1} s_i^2 = s_{i+1} s_i s_{i+1} \\ \forall i = 1, \dots, n-2 \end{array} \right\rangle$ $\frac{3 \cosh i}{2} \quad \text{Define } \mathcal{G}_{n} := \langle \sigma_{1}, \dots, \sigma_{n-i} \rangle \quad \sigma_{i}^{z} = e, \quad \sigma_{i} \sigma_{j} = \sigma_{j} \sigma_{i} \quad \text{if } i \neq j > i$ $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \gamma$ Then, by construction, we have a surjective group homourphism IL, : gn -> Sn σi→ si Vi Since The is surjective |g_n| = |S_n| = n! (<u>Note</u>: We de not even know yet if \mathcal{G}_n is even a finite group !) To prove \mathbb{R}_n is an iso, it is enough to enhine that $|g_n| \leq n$. $(Indeed : |g_n| = |S_n| < \infty \in \overline{n}_n : g_n \longrightarrow S_n \quad surjective \Rightarrow \overline{n}_n \text{ is also injective})$ We prove by induction on a that Ign I < n! Inzz. Base Case: n=z. $g_{2^{2^{2}}} < \sigma \mid \sigma_{1}^{2} = e > \simeq \mathbb{Z}/2\mathbb{Z}$ has size $z \leq z!$ Inductive Step: We assume $|\mathcal{G}_{k}| \in k!$ $\forall k=2, ..., n$, and show $|\mathcal{G}_{n+1}| \in (n+1)!$ Since $h \sigma_{1, \dots, \sigma_{n-1}} \in \mathcal{G}_{n+1}$ satisfy the relations defining \mathcal{G}_n , we have a group hommerghism in: Gn -> Gn+1 (Note: We don't know yet it in is injective r not) Set $G_n = Im(in) \leq G_{n+1}$ More precisely $G_n = subgroup of G_{n+1}$ generated by $\sigma_1, \dots, \sigma_{n-1}$ As $g_n/kerin \sim G_n$ by the First Ismorphism Theorem, and g_n is finite, We know that $|G_n| = |g_n| \leq |g_n| \leq n!$ We know that $|G_n| = |g_n| | |ker in|$ by the Inductive Hypotheses Note: $\pi_{n+1} \circ i_n = \pi_n$ since $g_n = \pi_n$ since $g_n = \pi_n$ S_n $i_n = S_n$ $G_n \leq g_{n+1} = \frac{\pi_n}{S_n}$ S_{n+1}

$$\frac{(laim: [g_{n+1}:G_n] = [g_{n+1}/G_n] \leq n+1. \quad (This would imply)}{[g_{n+1}] = [G_n] [g_{n+1}:G_n] \leq (n+1) n! = (n+1)!, as we wanted)}$$

• IF
$$l \neq n + 1$$
: $\nabla_{k} H_{\ell} = \nabla_{k} (\nabla_{\ell} \nabla_{\ell+1} \cdots \nabla_{n}) G_{n}$
We Treat series lesses, by emparing k and l .
CASE1: $k < l - 1$, then $\nabla_{k} \nabla_{i} = \nabla_{i} \nabla_{k} \quad \forall i \ge l$ by the relations in G_{n}
so $\nabla_{k} H_{\ell} = \sigma_{k} \sigma_{\ell} \sigma_{\ell+1} \cdots \sigma_{n} G_{n} = \sigma_{\ell} \sigma_{k} \sigma_{\ell+1} \cdots \sigma_{n} G_{n} = \sigma_{\ell} \cdots \sigma_{n} \nabla_{k} G_{n}$
 $= \sigma_{\ell} \cdots \sigma_{n} \sigma_{k} H_{n+1} = \sigma_{\ell} \cdots \sigma_{n} G_{n} = H_{\ell}$
CASE2: $k = l - i$, then $\nabla_{l-1} H_{\ell} = H_{\ell-1}$ by definition of $H_{\ell-1}$.

CASE3:
$$K = \ell$$
, then $\nabla_{\ell} H_{\ell} = \sigma_{\ell} \sigma_{\ell+1} \cdots \sigma_n G_n = H_{\ell+1}$.
= Λd by ellations in \mathcal{G}_{n+1}

$$CASE4: k > l+1, then σ_{k} commutes with $\sigma_{\ell} \cdots \sigma_{k-2}$
So $\sigma_{k}H_{\ell} = \sigma_{k}\sigma_{\ell}\cdots \sigma_{k-2}\sigma_{k-1}\sigma_{k}\sigma_{k+1}\cdots \sigma_{n}G_{n}$
 $= \sigma_{\ell}\sigma_{k}\sigma_{\ell+1}\cdots \sigma_{k-2}\sigma_{k-1}\sigma_{k}\sigma_{k+1}\cdots \sigma_{n}G_{n}$
 $= \sigma_{\ell}\sigma_{\ell+1}\cdots \sigma_{k-2}\sigma_{k}\sigma_{k-1}\sigma_{k}\sigma_{k+1}\cdots \sigma_{n}G_{n}$
 $\sigma_{k-1}\sigma_{k}\sigma_{k-1}$ by adations in Gran$$

Д

\$34.5 Application :

The given presentation of Su, allows us to define the sign function on
permutations, in a different what them we did in \$39.2
Definition: Sign: Su,
$$\longrightarrow \{\pm i\}$$
 sign $(ij) = -1$ determines
a (unique) gray homomorphism called the sign function
Given a permutation $w \in Sn$; we will write it is a a product of
transportions $w = \delta_{i1} \cdots \delta_{ir}$. Then $\text{Fign}(w) = (-1)^{5}$.
By construction, this assignment is multiplicative.
Issue: Why is sign (w) well-defined?
 \underline{A} : then do we have that for different expressions of w , the parity of the
number of transpositions we used hear't changed?
 \underline{A} : Use the presentation of Sul
 $\text{Sign}(S_i) = -1$ this
 $\text{Relations Say sign}(S_i^2) = (-1)^2 = 1 \checkmark$
 $\text{Sign}(S_i) = -1$ this
 $\text{Relations Say sign}(S_i^2) = (-1)^2 = 1 \checkmark$
 $\text{Sign}(S_i) = 1 = \text{Sign}(S_iS_i)$ if $1i-j > 1$
 $\text{Sign}(S_iS_i) = 1 = \text{Sign}(S_iS_i)$ if $1i-j > 1$
 $\text{Sign}(S_iS_i) = 1 = \text{Sign}(S_iS_i)$ if $1i-j > 1$
 $\text{Sign}(S_iS_i) = (-1)^3 = \text{Sign}(S_{i+1}S_iS_{i+1})$
So sign: $\text{Su} \longrightarrow 321$ is well-extinued.
In particular if $w = \sigma_{i_1} \cdots \sigma_{i_k}$ for $i_1, \cdots, i_k \in S_{i_1} \cdots \otimes i_{i_k}$
then $k \equiv l$ uned (z) , is , the parity when avoing simple transpositions
 $wn't$ change.
In purticular $(i_j) = \delta_{j-1} \delta_{j-2} \cdots \delta_{i+1} \delta_i \delta_{i+1} \cdots \delta_j \cdot 2 \delta_{j-1} \cdots$
 $wase $(j-i-i) \ge i \le 0$ simple transpositions . This is an even number,
so $\text{Sign}(i_j) = -1$ as we wrented$