Lecture XXXVI: Ring Hommorphisms, Ideals
Recall: (R, +, +, 0, 1) is a ring it
(I)(R, +, 0) is an abelian perp
(I) · RxR -> R is an asconiative binary operation with 1_R = Number element.
(II) Distributivity a. (b+c) = a.b+a.c ¥a,b,c ∈ R
(b+c).a = b.a+c.a ¥a,b,c ∈ R
(b+c).a = b.a+c.a ¥a,b,c ∈ R
Definition: A subaring A of R is a subset (ASR) entaining D_R & 1_R (=0&1
oFA) such that a+b ∈ A, -a∈A
A.b ∈ A
Definition: A held is a commutative ring R where
$$R^X = 3 a \in R : 3 b \in R : a \cdot b = 1_R t$$

equals R.30t.
5 36.1 Ring hommorphisms:

Let
$$R$$
 and S be two rings:
Definition: A ring homomorphism $f: R \rightarrow S$ is a function of sets which preserves
the ring structure m R and S
Hore precisely: $f(O_R) = O_S$; $f(I_R) = I_S$ [Neutral Flements of $R = S$, ung.]
 $f(a + b) = f(a) + f(b)$
 $f(a + b) = f(a) + f(b)$

As with group humilities, we have the usual rations of kernel and Image . $ker(F) = 3 a \in \mathbb{R}$. $f_{(q)} = 0_{S} \{ \subseteq \mathbb{R} \ | Kernel of f \}$. $Im(F) = 3 s \in S : \exists a \in \mathbb{R} st \ f_{(q)} = s \{ \subseteq S \ | Image of f \}$ Note: Im(F) is a subring of S

Ker (F) is <u>not</u> a subring of R because IR & Ker (F) (f_{(IR})=IS # OS) ker (F) will be a different algebraic substituture, namely, a two-sided ideal. Definition: A ring is morphism is a ring hummorphism h: R->S with an inverse that is also a ring hummorphism. Lemma: f: R->S ring iso (=) fis a ring hummorphism a a bijection.

3 Solve 1 decks:
Let R be a ring and ISR
Definition: We say I is a lift ideal of R if I satisfies
(i) I is an addian set gas of (R, t, 0)
(ii)
$$\forall r \in R$$
 $\forall x \in I$: $r \times \in I$
I is a right-ideal of R if I satisfies (i) and
(iii) $\forall r \in R$ $\forall x \in I$ $x.r \in I$
I is a right-ideal of R if I is both a lift and a right-ideal.
Remark: For a commutative ring R, all these nations are the same, so we just say
I $\subseteq R$ is an ideal (if I is a subgraph of (R, t, 0) \land $\forall r \in R$: $r \times \in I$.)
Examples: I = $\{0_R\}$ \measuredangle I = R are two which ideals of any ring R
Us call R the unit ideal.
Imma: Let $F: R \rightarrow S$ be a ring bommorphism. Then, Ker (F) is a two-bided ideal.
Remark: Ker (F) is clarify a subgraph of (R, t, 0) became a ring bommerphism.
Is a group bommorphism.
Now, if $r \in R$ \measuredangle $x \in Ker (F)$ we have
 $f(r, x) = f(r) f(x) = f(r) \cdot O_S = O_S$ (by Lemma \$353) \Rightarrow $r \times \in Ker (f, f(x, r)) = f(r) f(x) = f(r) \cdot O_S = O_S$ (by Lemma \$353) \Rightarrow $r \times \in Ker (f, f(x, r)) = f(r) f(x) = f(r) \cdot O_S = O_S$ (by Lemma \$353) \Rightarrow $r \times \in Ker (f, f(x, r)) = f(r) f(x) = f(r) \cdot O_S = O_S$ (by Lemma \$353) \Rightarrow $r \times \in Ker (f, f(x, r)) = f(r) f(x) = f(r) \cdot O_S = O_S$ (by Lemma \$353) \Rightarrow $r \times \in Ker (f, f(x, r)) = f(r) f(x) = f(r) \cdot O_S = O_S$ (by Lemma \$353) \Rightarrow $r \times \in Ker (f, f(x, r)) = f(r) f(x) = f(r) \cdot O_S = O_S$ (by Lemma \$353) \Rightarrow $r \times \in Ker (f, f(x, r)) = f(r) f(x) = f(r) \cdot O_S = O_S$ (by Lemma \$353) \Rightarrow $r \times \in Ker (f, f(x, r)) = f(r) f(x) = f(r) \cdot O_S = O_S$ (by Lemma \$353) \Rightarrow $r \times \in Ker (f, f(x, r)) = f(r) f(x) = f(r) \cdot O_S = O_S$ (by Lemma \$353) \Rightarrow $r \times \in Ker (f, f(x, r)) = f(r) f(x) = f(r) f(x) = f(r) f(x) = f(r) f(r) = O_S (f(r)) = O_S (f(r)) = O_S (f(r)) = O_S (r \in Kur f(r))$ is a two soled. Either I = 101, return the some $\lambda \neq 0$, $\lambda \in I \cdot I_R$ then $x = x \cdot I \in I$
Hence, such of iduals of a field = 3301, K §
Some argument proves :