Let R be a ring and I \neq R be a proper two-sided ideal borsider the group quotient $\overline{R}:=\overline{R}_{/I}$ & give it the structure of a ring as follows: $(\overline{R}, +, \overline{0})$ is an abelian group $\overline{a} + \overline{b} = \overline{a+b}$ where $\overline{a} = a+\overline{I}$ $-\overline{a} = -\overline{a} = -a+\overline{I}$ $\overline{0} = 0+\overline{I}$

• Multiplication: $\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{b}$ Note: We write $\overline{a} = \overline{b}$ m \overline{R}_{I} co $a = \overline{b}$ nucl \overline{I} to highlight the ideal \overline{I} . <u>Lemma</u>: $(\overline{R}, +, \cdot, \overline{O}_{R}, \overline{I}_{R})$ is a ring <u>Geode</u>: (1) Need to check nucltiplication is well-defined (we know $+_{\overline{R}}$ is welldefined from Theorem 36.3)

$$\overline{a} = \overline{c} \quad (\Rightarrow) \quad a-c \in I \quad (\Rightarrow) \quad c=a+f \quad horsonic f \in I$$

$$\overline{b} = \overline{d} \quad (\Rightarrow) \quad b-d \in I \quad (\Rightarrow) \quad d=b+g \quad g \in I$$
Then $ab - cd = ab - (a+f)(b+g) = ab - ab - ag - fb - fg$
So $ab - cd \in I$, if $\overline{ab} = \overline{cd}$

$$\prod_{I \in I} \prod_{i=I}^{I} \prod_$$

Remark: The quotient sing comes equipped with a natural sing homosophism

$$T: R \longrightarrow R_{\perp}$$

 $a \longmapsto a (= a \mod I)$

First Isomerphism Theorem by rings: Let $F: R \rightarrow S$ be a ring homomorphism. Then: (1) $I = Ker(F) \subseteq R$ is a two-violed proper ideal; (2) F fractors through TC $R \xrightarrow{F} S$ $F = \overline{F} \circ \overline{T} \cdot \frac{F}{F}$ Turthermore $\overline{F}: \stackrel{P}{I} \longrightarrow Im(F)$ is an isomorphism of rings. $\frac{Groof:}{F}$ (1) I is a z-sided ideal by Lemma 536.2 IF is proper because $f(I_R)=I_S + \sigma_S$. $\overline{F}: \stackrel{P}{P}_I \longrightarrow S$ is defined as $F(\overline{a}) = F(a)$

- . It is well-defined time $\overline{a}=\overline{5}$ (a) $a-5\in\overline{1}$. (b) $=\overline{f}(a+g) = \overline{f}(a) + \overline{f}(g) = \overline{f}(a) + \overline{0} = \overline{f}(a)$.
- . It follows from the definition of R_{I} that \overline{F} is a ring homomorphism and $F = \overline{F} \circ \overline{K}$.
- Now, \overline{F} is injected because $\ker(\overline{F}) \ni a \pmod{\overline{I}} \implies \overline{F}(\overline{a}) = 0$ is $a = 0 \mod \overline{I}$. $\operatorname{Im}(\overline{F}) = \operatorname{Im}(\overline{F})$ by constanction. Hence, extricting the target space of \overline{F} to $\operatorname{Im}(\overline{F}) = \operatorname{Im}(F) \subseteq S$ we get an isomorphism $\frac{P}{\ker(F)} \xrightarrow{N} \operatorname{Im} F$ by Lemma $\underline{E}_{36.1}$.

§ 37.3 Some operations on left ideals:
() Intersections:
We can take intersections of any set of ideals
Let
$$I_{x} \subseteq \mathbb{R}$$
 be a left ideal, where is lies in a labeling set \mathbb{A} .
 $I := \bigcap_{d \in \mathbb{A}} I_{x} = \{a \in \mathbb{R} \mid a \in I_{x} \mid \forall d \in \mathbb{A}\}$
Lemma 1: I is a left ideal
Proof: I is clearly a subgroup (intersections of subgroups are subgroups)
Now, $\forall r \in \mathbb{R} \quad \forall x \in I$, we have $r \cdot x \in I_{x} \quad \forall d \in \mathbb{A}$ because $x \in I_{x}$ and
 I_{x} is a left ideal). Thus, $r \cdot x \in I$, as we wanted.
(a) Sum of left ideals:
Again, ensure $I_{x} \subseteq \mathbb{R}$ is a left ideal $\forall d \in \mathbb{A}$
 $I := \sum_{\alpha \in \mathbb{A}} I_{\alpha} = \text{smallest left ideal of \mathbb{R} entaining all I_{α} 's.
I just estation for new
 $I = \frac{1}{2} = \frac{1}{2}$$

Lemma 2: I = { q_d + q_{d2} + ... + q_{dn} | q_{di} ∈ I_{di} d₁,-...a_n ∈ A } So, I consists of all finite sums we can form using elements of I_d's. $\frac{Proof:}{Proof:} \text{ IF A is finite say } A=\zeta_1,...,n\}, \text{ then any ideal I entaining } I_1,...,I_n \in \mathbb{R}^4$ must entain the set $I_1+\dots+I_n := \{a_1+\dots+a_n \mid a_i \in I_1, a_2 \in I_2,..., a_n \in I_n\}$ But this set itself is a left ideal $(r(a_1+\dots+a_n) = ra_1+\dots+ra_n \in I_1+\dots+I_n)$ Hence, the statement is true if A is binite.

The general case follows by the same argument: any element of I involves finitely many indices, so I is a left ideal by construction. Any ideal J cutaining I_d to J_d , will cutain I_d , + ...+ I_d , to each n. Thus, $I \subseteq J$. So, I is the smallest left ideal cutaining all I_d (def)

Since
$$\sum_{x \in X} R \cdot x$$
 is a left-ideal, we get $I_X \subseteq \sum_{x \in X} R \cdot x$.
Notational Convenience : If $X = \frac{3}{x_1, \dots, x_n}$? (finite subset of R), we just write
 $R(x, x_2, \dots, x_n)$ for the left ideal generated by X.
Definition : Let R be a commutative sing end $I \subseteq R$ be an ideal. We say I
is a principal ideal if $I = (a)$ for some $a \in I$
 $Example$: Set of ideals of $Z = \frac{3}{n} Z$: $n = 0, 1, 2, \dots$? by Parportion 2 \$36.3
(n)

Crollany: Every ideal of Z is principal.