559.1 Sime more quiced productions of an ideal.
Let R. R₂ be two sings. Let
$$f:R_1 \longrightarrow R_2$$
 be a sing homomorphism.
Let R. R₂ be two sings. Let $f:R_1 \longrightarrow R_2$ be a sing homomorphism.
Let R. R₂ be two sings. Let $f:R_1 \longrightarrow R_2$ be a sing homomorphism.
Let R. R₂ be two sings. Let $f:R_1 \longrightarrow R_2$ be a sing homomorphism.
 $I_1 = f^{-1}(T_2) = 3 a_1 c_1$, $f(a_1) \in T_2$ $f \in R_1$
 $g_{R_1} \in T_1$ because $f(a_{R_1}) = a_R \in T_2$.
 $a_1b \in T_1 \implies f(a_2, f(b) \in T_2 \implies f(a_2, b) = f_{1a_2} \pm f(b) \in T_2$, so $a_2b \in T_1$.
Now, assume T_2 is a defit ideal
if $x \in T_1$ and $r \in R_1$, then $f(r,x) = f_1(r_1)$ for $r_2 \implies r \cdot x \in T_1$.
Thus, T_1 is also a deft ideal.
Similarly, assume T_2 is a night ideal.
If $x \in T_1$ and $r \in R_1$, then $f(x, r) = f_1(x) \cdot f(r_1) \in T_2 \implies x \cdot r \in T_2$.
Thus, T_1 is also a night ideal.
(reductions there is used the statement for two wided ideals.
I maps of an ideal, used not be an ideal.
Example: $f: Z \longrightarrow Q$ $ZZ \subseteq Z$ is an ideal.
 $m \longmapsto \frac{m}{1}$
But $j \ge n$, $n \in Z \neq \subseteq Q$ is not an ideal (if is also an additive subgroup)
Resons: Only ideals of Q (a hield) are so the Q.
Lemma 2: If $f: R_1 \longrightarrow R_2$ is a subgroup, we have the T₂ is an additive subgroup.
Resons: Only ideals of Q (a hield) are so the T₁ $j \in R_2$.
 $\frac{g_{conf_1}}{m}$ Wonthe $T_2 = f(T_1) \in R_2$.
 $\frac{g_{conf_2}}{m}$ Wonthe $T_2 = f(T_1) = R_2$.
 $R_1 : maps of a subgroup is a subgroup, we have the T_2 is an additive subgroup.
Fix $x_2 \in T_2$ a $r_2 \in R_2$. Since his subjective, $J \times r_1 \in T_1$ and $f(x_1) \le x_2$.$

Assume I, is a left -ideal, then
$$r_1 \times_1 \in I_1$$
 because $f(r_1 \times_1) = f(r_1) f(r_1) = r_2 \cdot \times_2 \in I_2$
. Similarly, if I_1 is a night-ideal, then $\times_1 r_1 \in I_1$ because $f(x_1, r_1) = f(x_1) f(r_1) = x_2 r_2 \in I_2$
. From these Two cases, the statement for 2-sided ideals holds.

Let $f:\mathbb{R}, \longrightarrow \mathbb{R}_2$ be a <u>surjective</u> ring hommorphisse and let $J=\text{Ker}(f)\subseteq\mathbb{R}$, (it is a proper 2-sided ideal). We have a bijection :

Moreover, this bijection preserves ser usual specations on ideals. For instance, if $I_2 \subseteq R_2$ is a 2-sided ideal, $I_1 = F'(I_2) \subseteq R_1$ is a 2-sided ideal and $R_1 \swarrow R_2 \swarrow I_2$

5 39.2 Examples of rings, ideals and their interpretation:
()
$$R = K[x]$$
 polynomial ring in 1-versiable with coefficients from a field K (say G , R or Q)

Q

[ordlong. Every ideal of K[x] is principal. <u>Broof</u>: Let $I \subseteq K[x]$ be an ideal. If I = (0), then J is principal. On the antrony, if $I \neq (0)$, choose $g(x) \in I \cdot 30$ of smallest degree <u>(lain</u>: I = (8))

St/ (2) is time by construction. For the other in chain, we use the Euclidean
Algorithm IF FixeET, we will five = question
$$q_{100} + r_{100} +$$

Let $z \in \mathbb{R} \setminus \{0\}$ and $w \in \mathbb{R}$. Thus, $\frac{w}{z} = s + it \in \mathbb{C}$

Up to shifts by integers, we can make sure $-\frac{1}{2} \leq s, t \leq \frac{1}{2}$, i.e. $\exists a, b \in \mathbb{Z}^{5}$ st $-\frac{1}{2} \leq s-a$, $t-b \leq \frac{1}{2}$ $\Rightarrow N 5 cm \left(\frac{w}{2} - (a+bi)\right) \leq \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} = \frac{1}{2}$ So $\omega = (a+bi)^{2} + \Gamma$ where $\Gamma \in \mathbb{R}$ has more $\leq \frac{1}{2} |2| < |2|$. Propertien 2: Given $\omega \in \mathbb{R}$, $z \in \mathbb{R} > 305$ we can find $\frac{1}{2}$, $r \in \mathbb{R}$ s.t. $\omega = q \cdot z + \Gamma$ and $N 5 cm (r) = |r|^{2} < |z|^{2} = N 5 cm (z)$. Coestlang 2: Every ideal in $\mathbb{Z}[i]$ is principal. $\frac{groof:}{2}$ A generative of a num-zero ideal $I \leq \mathbb{Z}(i]$ is any $z \in I > 305$ of minimal more.