Lecture XL: Characteristeic of a ring; Prime and Maximal Ideals

۱

840.1 Summary of countering interval
Assume R is a commutative ring.
I
$$\subseteq \mathbb{R}$$
 is a init (if it is a subgroup such that $\mathbb{R} \cdot \mathbb{I} \subseteq \mathbb{I}$.
 $x \in \mathbb{R}$ is a init (if "a is initiable") if $\exists b \in \mathbb{R}$ at $a b = 1$
 $\mathbb{R}^{N} = set of units in R (group under multiplication)
Definition: We say R is an interval domain if ($x \in \mathbb{R}$ is a zero-divient $\Rightarrow x = 0$)
We say R is a principal ideal ring (if every ideal of R is principal, (e, of the
 $low (a) = l \cdot a \cdot r \in \mathbb{R} f = \mathbb{R} a$ for some $a \in \mathbb{R}$.
Initianing both projection on get principal ideal domain (P.I.D. Forshot) = interval
domain that is also a principal ideal ring.
Examples: $0 \ge \mathbb{Z}$, K any field
 $\otimes \mathbb{K}[X] = principal ideal domain.$
 $\mathbb{E}room pield is an interval domain.
 $\mathbb{E}room field$ is an interval domain.
 $\mathbb{E}room field$ is an interval domain.
 $\mathbb{E}room field$ is an interval domain.
 $\mathbb{E}room field$ is an interval domain.
 $\mathbb{E}room field$ is a ninterval domain.
 $\mathbb{E}room field$ is an interval domain.
 $\mathbb{E}room field$ is an interval domain.
 $\mathbb{E}room \mathbb{R}^{n} \cap \exists conditions(\mathbb{R}) = [0]$, we exclude that R is an interval domain.
 $\mathbb{P}oot: \mathbb{R} \cap \exists conditions(\mathbb{R}) = [0]$, we exclude that R is an interval domain.
 $\mathbb{E}room \mathbb{R}^{n} \cap \exists conductive ring U unall $o_{\mathbb{R}} o(p)$. We antimatively get a ring boundarythism
 $\mathbb{Z} \xrightarrow{\Phi} \mathbb{R}$ Note: $\phi_{(0)} = o_{\mathbb{R}} = [e^{+init}e^{-initions} - e^{-initions} - e^{-inition$$$$

Turbunner,
$$I \neq Z$$
 since $\phi_{1(K)} = i_K + i_K \neq 0_K$. Thus: $f = 0$ is $f \gg 2$.
Bedination: We call γ the characteristic of R .
M be an outer assuming γ is prime if $\gamma \neq 0$.
By First Isomorphism Theorem $Z_{TZ} = \overline{\Phi} = R$ is an injective sing homomorphism
Lemma: If R is an integral densite, then $\gamma = 0$ is a prime number.
Burth: We capsuly antided to $R = 0$. In γ is a prime number.
Burth: We capsuly antided to $R = 1 = 0$. In γ attender, since $\overline{\Phi}$ is injective, we
 $\overline{\Phi}(\overline{a}) \neq 0_R$ and $\overline{\Phi}(\overline{I}) \neq 0_R$.
Since $\overline{\Phi}(\overline{a}) \overline{\Phi}(\overline{c}) = 0_R$, we can clude that \overline{R} is not an integral density.
Remark: the a commutative sing Let $I \subseteq R$ is a proper ideal and cantide the quotient sing $\overline{R} = R$.
Bedination: We say that I is a prime (Z_{TZ} is a held, huma an integral density)
Frequentiation: the say that I is a prime (A_{TZ} is a held of $\overline{R} = N_T$.
The prime is prime if, and rely if, I is a (proper ideal and (a be $\overline{I} \Rightarrow a \in Irr be \overline{I}$)
(a) I is prime if, and rely if, I is a (proper ideal and (a be $\overline{I} \Rightarrow a \in Irr be \overline{I}$)
(b) I is the angle to inductive mang proper ideal of R (commutative)
($I > I$ is a maximal ideal if, and rely if, I is a (proper ideal of I is
maximal with except \overline{L} induced if \overline{R} is a hield, then \overline{R} is a induced of \overline{I} is a fixed of \overline{I} is the order \overline{I} is a prime.
($I > I$ is the conduct \overline{I} is a fixed of \overline{R} is a induced if \overline{I} is a $\overline{I} = \overline{I} = \overline{$

(2) Assume I is projer.

Since ideals of R_{T} correspond to ideals of R containing I (Theorem 2 \$39.2) we conclude I is maximal \iff Set of ideals of R containing I is {I, R}

Lemma: A commutative ring K is a field , if end ruly if , I scale of K =
$$\frac{360}{K}$$
 K
Proof: Recall that a commutative ring K is a field \implies K^{*} = K $\frac{30}{10}$. (ie,
every non-zero element is insertible)

$$(=>)$$
 IF $I \neq \{0\}$ is an ideal of K, then $\exists a \in I \setminus \{0\}$. In this case,
we get $J \supset K \cdot a \ni a^{-1} \cdot a = 1$, so $I \supseteq K \cdot 1 = K$, giving $I = K$.

$$(\Leftarrow)$$
 Let a \in K \ 107 and set $I = (q)$ ideal generated by a
Since $a \neq o$, we have $I \neq 0$, so by assumption, we conclude $I = K$.
In particular, $I \in I = K(q)$ so $\exists b \in K$ with $I = bq$. Then $a \in K^{\times}$.
Include: $K \setminus 107 \subseteq K^{\times}$. Since $K^{\times} \subseteq K \setminus 107$ by construction, equality holds

\$40.4 Some examples:

Open C, every polynomial factors
$$S(x) = (x-d_1)(x-d_2) \cdots (x-d_d)$$

 $z_1, \dots, z_d \in \mathbb{C}$ not necessarily distinct

$$\frac{\operatorname{Lemma 2:}}{\operatorname{Them}} \quad \operatorname{Let} \ g_{(X)} \in \mathbb{G}[X] \text{ be mentic of degree of } g_{(X)} = 1 \implies (g_{(X)}) \text{ is well}}$$

$$\frac{\operatorname{Them}}{\operatorname{Them}} \quad (g_{(X)}) \subsetneq \mathbb{G}[X] \text{ is prime} \implies degree of } g_{(X)} = 1 \implies (g_{(X)}) \text{ is well}}$$

$$\frac{\operatorname{Beoh:}}{\operatorname{I:}} \quad \operatorname{Assemme} \ g_{(X)} = (X-2i) \cdots (X-2d)$$

$$I:= (g_{(X)}) \leftrightharpoons \mathbb{G}[X] \quad \text{them}} \ d \ge 1. \quad \operatorname{Recall} \ g \text{ is the element of } I \text{ roots}}$$
of recallent degree in I. By Regressing is the element of I roots of final degree in I. By Regressing is the element of I roots of final degree in I. By Regressing is the element of I roots of final degree in I. By Regressing is the element of I roots of final degree in I. By Regressing is the element of I roots of final degree in I. By Regressing is the element of I roots of final degree in I. By Regressing is the element of I roots of the element is I roots of the element of I roots of I roots of the element of I roots of the element of I roots of I roots of the element of I roots of I roots of the element of I roots of I roots of the element of I roots of I root

Pick
$$f \in \text{Ker}(ev_{\alpha})$$
, then using the Euclidean Algorithm, we have unique $f(x)_{\Gamma(x)} \in \mathbb{Q}(x)$
 $f(x) = f(x)_{\Gamma(x)} (x-\alpha) + \Gamma(x)_{\Gamma(x)}$ with $\Gamma = 0$ or $deg(\Gamma) < deg(X-\alpha) = 1$.
In both cases, $\Gamma(x) \in \mathbb{Q}$ ($\Gamma = 0$ or $deg(\Gamma) = 0$).

Then
$$ev_{\alpha}(f_{(x)}) = ev_{\alpha}(f_{(x)}(x-\alpha) + f_{(x)})$$

 $o = ev_{\alpha}(f_{(x)}) ev_{\alpha}(x-\alpha) + ev_{\alpha}(f_{(x)})$
 $= ev_{\alpha}(f_{(x)}) \cdot o + f = f$
 $\Rightarrow f = o$.
 $\Rightarrow f \in (x-\alpha)$

By the 1st Iso Theorem $f = ev_{x}$ is an iso, so (x-z) is maximal by Prop. \$ 39.3. Conclusion: Paime ideals of $C[x] \longrightarrow {0}{0}{0}{1} \cup {1}(x-z): z \in 0$ maximal ideals of C[x]