1

Recall: Let R be a commutative ring and I & R a proper ideal.

I is prime $\iff \mathcal{B}_{I}$ is an integral domain $\iff \forall a, b \in \mathbb{R} [a b \in I \implies a \in I \text{ or } b \in I]$

I is maximal (=> R/I is a field (=> I is maximal anny all proper ideals of R with respect to inclusion (ie ISJER ideal => J=I or J=R.)

Me still have to see if maximal ideals exist hr any R commutative ring. In general this is achieved by using Zorn's Lemma (see \$41.2). For a particular class of rings, called Noetherian rings, an alternate proof can be given which avoids to use of Zorn's Lemma We will see this in a future lecture.

$$\frac{5}{9411} The beauty of annulative rings:
Geometrically, we can think of commutative rings as rings of functions valued in a field
To fix ideas, we assume this field is C.
Henistically X is a (topological) space runs $Tun(X,C) = \{f: X \longrightarrow C \ (catinuous)\}$
. it is a ring with pointwise + and •
 $0 = constant 0$ function.
 $1 = \frac{1}{1}$
 $Y \subseteq X \ (closed)$ subspace runs $Ty = \{f: X \longrightarrow C \ | f_{13}\} = 0$ $\forall y \in Y \}$ ideal.
So ideals of Fun (X,C) correspond to closed subsits.
If X has an algebraic rative, then we restrict $Tun(X,C)$ to polynomial / rational functions
 $Examples: X = TR^2$ runs $R = polynomial (rund-valued)$ functions $nX = TR[X,Y]$
Q: What he we gain?
A: We can detect ron-transpoord intersections (i.e. multiplicities)$$

 $\frac{E_{xample}}{I_{z}} = (y - x^{2}) \subset R = \mathbb{R}[x, y]$ $I_{z} = (y) \subset R = \mathbb{R}[x, y]$

Subjects of
$$\mathbb{R}^{n}$$
 when functions from I_{1} (any I_{2}) reacist $X_{1} = \{(a,b) \in \mathbb{R}^{n} : b = a^{n} t$ (panelola)
 $X_{2} = \{(a,b) \in \mathbb{R}^{n} : b = a^{n} t$ (panelola)
 $X_{2} = \{(a,b) \in \mathbb{R}^{n} : a \in \mathbb{R}^{n} t$ (x-axis)
Interaction of uts $X_{1} \cap X_{2} = \{(a,b)\}$ but we can to
taxe "last" the multiplicity.
Right idea : define the ideal of functions remaining at $X_{1} \cap X_{2}$
 $I = I_{1} + I_{2} = (g - x^{n}, y) = (g, x^{n})$ This is not the ideal $(X_{1}g)$
 $keyenet 2$ indicates we have multiplicity.
Right idea : define the ideal of functions on [Tays] space X with values in C or one
often the rest multiplicity.
I commutative sing $\mathbb{R} = [Tays]$ functions on [Tays] space X with values in C or one
continuous to the properties of the ideal train
 $graphinical$ algebraic
I hado = valents of functions which works in a given subset $Y \in X$
(is the topological selfing
 Y much be a clust at
 $Topological selfing$
 $Topological s$

• Soutial : given i, jed it is possible that within is just jet hold.
is, not every pair of elements of J an imprecise
$$)$$

Assume that every claim is si, similar in J ian to bounded above y , y , $y \in 1, j \in J$ of $j \in j, j, j, \dots, j \in j$ there.
Thun, thue exist maximal elements in J.
In an ever, $J = ut of particided of R which entain J.
 $J \neq \phi$ because $I \in J$.
 $s \leq = inclusion (I, J_z \in J , I_z \in J mans I, $\subseteq I_z$)
We derive the hypothesis of Zord's Lemma: Assume is an given a chaim in J
 $I_i \in I_z \in \dots$:
 $u = acht I_k \subseteq R$ is a particideal entaining J.
and $I_k \in I_{aj1}$ $\forall k = 0, 1, 2, \dots$
Take $I = \sum_{k=0}^{n} I_k = \bigcup_{k=0}^{n} I_k$ with $k = 0, 1, 2, \dots$
To pare: (1) $I \subseteq R$ is a graph ideal
(2) $I \supseteq J = I = I \supseteq I_k$ $\forall k = 0, 1, 2, \dots$
(4) $I \downarrow \subseteq R$ because if $i \in I$, then $\exists k = t = I_k$, entradicting the balt that
 $I_k = i = j \exists n z 0 = i d z d i k = 0, 1, 2, \dots$
(4) $I \downarrow \subseteq R$ because if $i \in I$, then $\exists k = t = I_k$, entradicting the balt that
 I_k is partin.
Why is I an ideal?
 $a_j h \in I = j \exists n z 0 = i a_j b \in I_n$ (hence, $a_j h \in I_{nig}$ $\forall d z 0$)
 $= a \pm b \in I_n$ $J \Rightarrow a \pm b \in I$ Hency, $I = i \subseteq R$ there, $I = i \leq R$ there, $I = i \leq R$ there, $I = i \leq R$ is a ideal
 $I = i \in I_n$ $\forall r \in R$ $\exists n z \in I \in R$ and $n particideal T , $\exists I \subseteq R$ prime
 $i d a l i i i \leq I$.
 $I = I = I$.
 $I = I$$$$

$$\frac{\operatorname{Proprint}_{(n)}(1)}{\operatorname{Proprint}_{(n)}(1)} \quad \operatorname{Proprint}_{(n)}(1) \quad \operatorname{Proprint}_{(n)}($$