Lecture XLII: Local rings

l

Recall the following poult from \$\$1.2 for commutative rings <u>Proportion:</u> (1) Maximal ideals exist (Given I $\subseteq \mathbb{R}$ proper, $\exists H = \mathbb{R} \mathbb{R}$ ideal of \mathbb{R} with $I \subseteq H$) (2) $H_1, H_2 \subseteq \mathbb{R}$ maximal ideals $\Longrightarrow (H_1 = H_2 \text{ or } H_1 + H_2 = \mathbb{R})$ (3) For any ring homomorphism $f: \mathbb{R}_1 \longrightarrow \mathbb{R}_2$ is $\Im_2 \subseteq \mathbb{R}_2$ prome ideal in \mathbb{R}_2 , the set $\Im_1 = f^{-1}(\Im_2) = \exists a \in \mathbb{R}_1 | f(a) \in \Im_2 \} \subseteq \mathbb{R}_1$ is a prime ideal.

<u>Remark</u>: The conclusion of (3) will be take if we replace the adjective "prime" with "maximal"

\$42.1 Local Rings:

Let R be a commutative sing. <u>Definition</u>: We say that R is <u>local</u> if it has a unique maximal ideal. Usually we denote it by (R, 17), if 17 is the unique maximal ideal of R. Example: Every field is a local ring (0) & K is the my proper ideal of K) <u>Proprietion:</u> A commutative ring R is local if, and mly if $M = R - R^* = 3a \in R \mid a$ is not a unit in $R \neq \subseteq R$ is an ideal. In this case, M is the unique maximal ideal of R. Proof: We begin by recalling that if I f R is a proper ideal, then INR = \$ that is $I \subseteq \Pi$. Thus, if $\Pi \subsetneq R$ is an ideal, it is clearly the maximal idea. (<=) Assume 11 q R is an ideal, then by the observation made above, we have Set of Maximal ideals of R = 3114, ie R is local. (=>) Assume Ris a local ideal and let JCR he its unique maximal ideal. Thm, $J \subseteq \Pi$ ($J \cap R^* = \emptyset$). If x ∈ M, I = (x) ⊊ R because I = 3 r × 1 r ∈ R } and I ∈ I (=) x ∈ R × Thus, $I \subseteq R \iff X \in \Pi = R \setminus R^{*}$.

By our previous result, I I ÇR maximal ideal containing I.

As R is local,
$$\tilde{I} = J$$
, lence $x \in J \quad \forall x \in \Pi$, ie $\Pi \subseteq J$.
Conclusin: $J \subseteq \Pi \& \Pi \subseteq J \implies \Pi = J$ is an ideal of R

Example 1:
$$R = K[x]_{(x^2)}$$
 is a local ring.
Seable We determine \mathbb{R}^{x} . We are write any FER as $F = a + kx$ with $a, b \in K$.
 $a + bx \in \mathbb{R}^{x}$ with $a, b \in K$ \implies $(a + bx)(c + dx) = 1$ for some $c, d \in K$, is
 $1 = (a + bx)(c + dx) = ac + (a + bc)x + bdx^{k} = 0$ $\left[ac = 1 \\ a + bc = 0\right]$
We can solve their equations in $K = c = \frac{1}{a}$ $\implies a \in K^{x} = K \cdot lot$
 $d = -\frac{bc}{a}$
Thus $\mathbb{R}^{x} = \frac{1}{2}a + bx = 1$ $a \neq 0$, $a, b \in K$ $\frac{1}{2} \subseteq \mathbb{R}$
 $\Rightarrow \mathbb{R} \setminus \mathbb{R}^{x} = (x)$
Since this is an idual, we conclude that \mathbb{R} is local \mathbb{R} $(x) \subseteq \mathbb{R}$ is its unique
maximal idual.
Hence : Solt of iduals of $\mathbb{R} := K(x)$
 $K(x) = \frac{1}{2}(0), (x), (1) = \mathbb{R}$
 f and y prime/maximal
 $k = 0$
Alternative Argument: Consider the netwood projection $\mathbb{R} : K(x) \Longrightarrow K(x)_{(x^2)}$
By the Second Ismorphism Theorem we have
 $\left\{\begin{array}{c} Thus of K(x) \\ containing (x^{1}) \\ \mathbb{T}^{-1}(S) \longleftarrow T(Q) \end{array}\right\}$

Furthermore, given $\Pi \subseteq \mathbb{R}$ maximalidual, then Π is prime, so $Q = \Pi^{-1}(\Pi)$ is a prime itual of $K[\chi]$ cataining χ^2 . But $\chi^2 \in Q$ a Q is prime $\Longrightarrow \chi \in Q$ or $\chi \in Q$, is $\chi \in Q$. Thus { Q prime idual of $K[\chi]$ with $\chi^2 \in Q$ } = 2 Q prime idual of $K[\chi]$ with $\chi \in Q$ }

Now,
$$K(x)$$
 is a PD, so $Q = (F)$ to one $F \in K(x) \setminus K$ (because $K(x)^{N} = K)^{N}$
Since $x \in Q = (F)$ and $F \mid x$, we conclude that high $\in dq(x \ge 1)$.
Thus, $F = a_{X}$ for a $\in K$.
We conclude $\Pi \subseteq \mathbb{R}$ maximal \Longrightarrow $\Pi = \Pi(\Pi^{1}(Q)) = \Pi((x)) = (x) \subseteq \mathbb{R}$.
Note: (x) is maximal because $\mathbb{P}_{(X)} = \frac{K(x)}{K(x)} \cong \frac{K(x)}{(x)} \cong K$ is a hold.
Thus, \mathbb{R} is a local ring because (x) is its unique maximal ideal.
Example 2: $\mathbb{R} = K[[X]]$ using of formul prover series in one variable with
 $contributes$ from a hold K
A typical element of \mathbb{R} is of the form:
 $a_{1}+a_{1} \times t a_{2}x^{4} + \cdots = \sum_{n=0}^{\infty} a_{n}x^{n}$
Addition: componentative $\left(\sum_{n=0}^{\infty} a_{n}x^{n}\right) + \left(\sum_{k=0}^{\infty} b_{k}x^{k}\right) = \sum_{n=0}^{\infty} (a_{n}+b_{n})x^{n}$
Multiplication: distribution on T
 $\left(\sum_{n=0}^{\infty} a_{n}x^{n}\right) \left(\sum_{k=0}^{\infty} b_{k}x^{k}\right) = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} a_{n}b_{k}\right)x^{M} = \sum_{n=0}^{\infty} \left(\sum_{j=0}^{M} a_{j}b_{n,j}\right)x^{M}$.
Notes: In our definition of F and $-$ of elements of $\mathbb{R} = K(\mathbb{R} \times \mathbb{R})$ middly many
spectrons where performed to get the contribution of X^{n} (for a fixed $x_{j})$
 $E_{1} = \sum_{j=0}^{M} a_{j}b_{n,j} \in K$ for $a_{1} = a_{1} \in K$.
The same idea will give us a aim of structure on the ring of Lement since
 $K(|X|):= \left\{\sum_{j=-\infty}^{\infty} a_{j}x^{j} : a_{j} \in K$ $j = N, n + N = \mathbb{Z}_{0}^{n} \right\}$.
Alternative solution: $K \mid x^{-1}, x \mid \mathbb{R}$
From exercise: One definition of multiplication will not make sense for the allocian
speak $K_{1}^{n}(x'; x):= \left\{\sum_{j=-\infty}^{\infty} a_{j}x^{j} : a_{j} \in K$ $y \in \mathbb{R}$ $\{y \text{ prove mater + 1)$

Reason: if it hid $\dots + x^{-2} + x^{-1} + 1 + x + \dots = \frac{x^{-1}}{1 - x^{-1}} + \frac{1}{1 - x} = 0$ Which can't be Twe Compare coefficient of x^{k} 6 get 1 = 0).

Claim:
$$R = K[[x]]$$
, $R^{*} = K^{*} + x K[[x]]$ is power series with un-
zero constant term. Recom: we can compute F' by hand term by term if $f_{(0)} \neq 0$
 $\implies R - R^{*} = (x)$ is an ideal, hence R is a local ring.

$$\frac{\text{Example 3:}}{R = \frac{3}{5} \in \mathbb{Q} \quad \text{places with divide b} \quad (\underline{\text{Notatim}}; \mathbb{Z}_{(p)})$$

$$\frac{\text{Claim 1:}}{\text{SF}} \quad \text{R is a subring of } Q$$

$$\frac{\text{SF}}{\text{P}} \quad 0 = \frac{0}{7} \quad 1 = \frac{1}{7} \quad \in \mathbb{R}$$

$$= \frac{a_1}{b_1} \quad \frac{a_2}{b_2} \quad \in \mathbb{R} \quad \Longrightarrow \quad \frac{a_1}{b_1} \pm \frac{a_2}{b_2} = \frac{a_1b_2 \pm a_2b_1}{b_1b_2} \quad \text{S} \quad \frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = \frac{a_1a_2}{b_1b_2}$$

$$= \frac{p_1A_2}{b_1} \quad \text{S} \quad a_1 + \frac{a_2}{b_2} = \frac{a_1a_2}{b_1b_2} \quad \text{S} \quad a_1 + \frac{a_2}{b_1} \quad a_2 = \frac{a_1a_2}{b_1b_2}$$

$$= \frac{p_1A_2}{b_1} \quad \text{S} \quad a_1 + \frac{a_2}{b_2} \quad a_1 + \frac{a_2}{b_1} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b_2} \quad a_1 + \frac{a_1a_2}{b_1b_2} \quad a_2 = \frac{a_1a_2}{b_1b$$

$$\frac{(\operatorname{laim} z)}{P^{*}} = \frac{1}{2} \frac{1}{2} \in \mathbb{Q} \left[\begin{array}{c} \operatorname{gcl}(q,b) = 1 \\ p \neq a \neq p \neq b \end{array} \right] \subseteq \mathbb{R} \left(\left(\frac{a}{b} \right)^{-1} = \frac{b}{4} \text{ in } \mathbb{Q} \neq lies \operatorname{m} \mathbb{R} \right)$$

$$\implies \mathbb{R} \cdot \mathbb{R}^{*} = (p) = p \operatorname{R} \text{ is on idual}$$

$$\underbrace{\operatorname{Conclude}}_{\operatorname{conclude}} : \operatorname{R} \text{ is a local aing}.$$