factorizes (uniquely!) through $R \xrightarrow{f} R'$ " $T \xrightarrow{g} \frac{1}{3!F}$

The following would is the analog of the 1st Iso Theorem. For the sing of fractions $S^{-1}R$ replace (1) by j st $j(S) \subset (S^{-1}R)^{\times}$ (2) by $f(S) \subseteq (R')^{\times}$.

Here the precise statement:

 $\frac{\Im_{\text{coof}}}{\widehat{F}(\underline{r})} = f(\underline{r})' f(\underline{r}) = \underline{r}' f(\underline{r}) = f(\underline{r}) \quad \text{so} \quad \underline{r} = \widetilde{f} \cdot \underline{j} \; .$

$$\vec{F}\left(\frac{c}{s} + \frac{c'}{s'}\right) = \vec{F}\left(\frac{cs' + sc'}{ss'}\right) = F(ss')^{-1} f(rs' + sr')$$

$$= F(s)^{-1} F(s')^{-1} (F(s') + F(s) F(s'))$$

$$= F(s)^{-1} F(s') + F(s')^{-1} F(s') = F(s)^{-1} F(s')^{-1} F(s')^{-1}$$

$$\vec{F}\left(\frac{c}{s} + \frac{c'}{s'}\right) = \vec{F}\left(\frac{cs'}{ss'}\right) = F(ss')^{-1} f(s') = F(s)^{-1} F(s')^{-1} F(s') F(s')$$

$$= F(s)^{-1} F(s) F(s')^{-1} F(s') = F(s)^{-1} F(s')$$

$$\vec{F}\left(\frac{1}{s}\right) = F(s)^{-1} F(s) = 1^{-1} F(s') = F(s)^{-1}$$

• If
$$g: S^{-1}R \longrightarrow R'$$
 aing homosophism with $f = goj$, then
 $S\left(\frac{c}{s}\right) = S\left(\frac{c}{t}\right) S\left(\frac{t}{s}\right) = S\left(\frac{c}{t}\right) S\left(\frac{c}{s}\right)^{-1} = S\left(\frac{c}{t}\right) S\left(\frac{s}{s}\right)^{-1} = S\left(\frac{c}{t}\right) S\left(\frac{s}{s}\right)^{-1}$
 $= F(c) F(s)^{-1} = F\left(\frac{c}{s}\right)$

Thus, f is unique.

\$ 44.2 Ideals of S'R:

4

We assume R is a commutative ring $\& S \subseteq R$ is a multiplicatively closed set. We consider the ring homeneophism $j: R \longrightarrow S'R$

$$\frac{\Im(\operatorname{intur})}{\operatorname{intur}} = \operatorname{intur} \operatorname{intur} = \operatorname{intur$$

(1) We define
$$J = \frac{1}{5} \frac{q}{s}$$
: $a \in I = s \in S$?
We show $J \subseteq S^{-1}R$ is an ideal:
 $\cdot \frac{0}{1} \in J$ because $o \in I$, $i \in S$
 $\cdot x_{1} = \frac{a_{1}}{s_{1}}$, $x_{2} = \frac{a_{2}}{s_{2}} \in J$ $(a_{1}, a_{2} \in I)$, $s_{1}, s_{2} \in S$) $\Rightarrow x_{1} \pm x_{2} = \frac{s_{2}a_{1} \pm a_{2}s_{1}}{s_{1}s_{2}}$
but $s_{2}a_{1} \pm a_{2}s_{1} \in I$ a $s_{1}, s_{2} \in S$ so $x_{1} \pm x_{2} \in J$.
 $f = \frac{a_{1}}{s_{1}} \in J$ $(a_{1} \in I)$ and $\frac{c}{s} \in S^{-1}R$ $\Rightarrow \frac{c}{s} \cdot \frac{a_{1}}{s_{1}} = \frac{ca_{1}}{ss_{1}}$
 $\cdot x_{1} = \frac{a_{1}}{s_{1}} \in J$ $(a_{1} \in I)$ and $\frac{c}{s} \in S^{-1}R$ $\Rightarrow \frac{c}{s} \cdot \frac{s_{1}}{s_{1}} = \frac{ca_{1}}{ss_{1}}$
Since $a_{1} \in I$, then $ra_{1} \in I$ $(a_{1} \in I)$ $(a_{2} \in S)$ $(a_{3} \in S)$

Hence,
$$J$$
 is an ideal of $S^{-1}R$.
Next, we show $(j(I))_{S^{-1}R} = J$.

((f)
$$j(I) \subseteq J$$
 because $a \in I$ $d = s = I \in S$. Since J is on ideal, S
in set $(j(I))_{S''R} \subseteq J$ by definition of ideal generalid by a set
(2) frich $x = a \in J$ with $a \in I$, $s \in S$ then
 $x = a = \frac{1}{5} \cdot |a| \in (j(I))_{S''R}$.
 $C''R \in j(I)$
Thus $J \in (j(I))_{S''R}$.
(2) frich $\tilde{I} \in S^{-1}R$ on ideal, we let $I = j^*(\tilde{I}) \subseteq R$.
By constantion, I is an ideal of R . Furthermore, $I = ia \in R \mid a \in \tilde{I}$?
 $(laim: S''I = \tilde{I}:$
 $3F/$ We check the bable indusion:
(e) $S''I = (j(I))_{S''R} \subseteq (\tilde{I})_{S''R} \equiv \tilde{I}$
 $part(i)$
 \tilde{I} is an ideal
 $I = j^*\tilde{I} \longrightarrow \tilde{I}$

(2) Convendy, given $\frac{r}{s} \in \tilde{I}$, we have $\frac{s}{r} \cdot \frac{r}{s} \in \tilde{I}$, ie $\frac{r}{r} \in \tilde{I}$ $\left(\frac{sr}{s} = \frac{r}{r}\right)$ Hence $j(r) = \frac{r}{r} \in \tilde{I} \implies r \in j^{*}(\tilde{I})$, so $\frac{r}{s} \in S^{-1}I$. Conclude $\tilde{I} \subseteq S^{-1}I$