
 
LectureXLIV Properties of Localization
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This will generalize to a pair R anycommutative ring

anyprime ideal
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We use the notation Rp I R P R R localized at P
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where re R S P
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Conclusion Rj r P s P Rp Rp 5 rep S P

idealinRpgeneratedby
Then Rp Rp P Rp is an ideal in Rp
Hence Rp PRP is a local ring called the localization of R at P

Summary R commutative ring S R P mult closed set

Y prime ideal

us Rp PRP is a localring called localization of R at P

94.1 More properties of S R

Proposition 1 We have a ringhomomorphism j R S R
Y

Mower Ker j hr t.ro for some test

jis is invertible in S R SE S

Proof By our definition of in S R j usfects Also j 1 I E S R
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jus is invertible to se S because I E S R and I t
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We should NOTexpect j to be injective unless R is an integral domain

Example R 22 5 312,44 j s in 5 R
Furthermore IR1 6 IS_ RI 3 so it can't be injective
Remark The properties in Proposition are the defining properties of S R

Meaning 1ˢᵗ Iso Theorem in a veryprecise sense defined thequotient RI It says
that I is the onlyring whichcomes together with a surjective ring homomorphism IT R R

and satistics every ring homomorphism f R R such that I cker f
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factorizes uniquely through R f R
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The following result is the analog of the 1ˢᵗ Iso Theorem For the ring of fractions

5 R replace 117 by j st j s c s R

12 by f s R

Here the precise statement

Proposition 2 Let R be a commutative ring and S a multiplicatively closed subset

Let f R R be a ring homomorphism such that f s c R Then

ring homomorphism denoted by below S R F R
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Thus F is unique



44.2 Ideals of S R

We assume R is a commutative ring S R is a multiplicatively closed set

We consider the ring homomorphism j R S R

Definition Given an ideal IER wedefine

5 I 1 j II g r ideal of S R definedby JIII
ideal in S R generated by 39 a EI

Lemma1 Let I R be an ideal

111 5 I AEI SES

121 Everyideal in S R is of the form 5 I for some ideal I R

root Recall Ker j re R tes with tr o ER is an ideal of R

Votation For an ideal I S R we define

j I j II aer jia q e I R

We knowby Lemmal 38.2 that j I is an ideal of R

11 Wedefine J 4 AEI SES

We show J 5 R is an ideal
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Since a EI then ra EI Conclusion

Ex 59 J
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Hence J is an ideal of S R

Next we show jlIllg.ir J




