\$49.1 Summary:

So far, we worked out some examples of rings of quadratic integers $O(T_D)$ where $D \in \mathbb{Z} \cdot j_0$ is square free.

 $\frac{\text{Recall}}{\text{C}} : \mathcal{O}(\overline{D}) = \mathbb{Z}[w] \quad \text{with} \quad w = \begin{cases} \overline{D} & \text{if } D \equiv 2, 3 \mod 4 \\ \frac{1+\overline{D}}{z} & \text{if } D \equiv 1 \mod 4 \end{cases}$

D	-1	-2	-3	- 2	-7	- 11
ω	5-1	5-2	<u>1+53</u> z	۲-2	<u>1+5-7</u> 2	<u> + - </u> z
(ID) = Z[w]	Euclidean (hence PID)	Euclidian (hence PID)	Euclidian (hence PID)	NOT PID (hunce hot Euclidean)	Euclidian (hence PID)	Euclidian (hence PID)

TODAT IF D = -19, we get a PID that is not a Euclidean driman.

\$ 49.2 The case D = -19:

Theorem 1: The ring $R = O(\int -19)$ is not a Euclidean domain Note: $-19 \equiv 1 \mod 4$, so $O(\int -19) = \mathbb{Z}[\omega]$ for $\omega = \underline{1 + \int -19}$

Before we prove the Theorem, we need the following fact, which we decady discussed in Cordeary \$ 48.1.

$$\frac{Lemma 1}{3f} = M(J-19), \quad \text{then } K^{2} = 3\pm 15.$$

$$\frac{3f}{\text{Recall that } b < 0 \implies N(\alpha) = |x|^{2} \quad \forall x \in Q(TD) \ge O(TD).$$

(rollary §48+1 says
$$\mathbb{R}^{\times} = \{ d \in \mathbb{O}(\sqrt{1-19}) : |d|^2 = 1 \}$$

Now, for $d = a+bw$ 9, LEZ we have $1 = |d|^2 = (a+\frac{b}{2})^2 + \frac{19}{4}b^2 \ge \frac{19}{4}b^2 \ge 5^2$

Thus $|\alpha|^2 = 1 \iff (\alpha + \frac{1}{2})^2 = 1$ a $b^2 = 0 \iff \alpha = \pm 1$ a b = 0<u>Broof of Theorem 1</u>: We show R is not Euclidean arguing by contradiction. Assume R

is Euclidean with respect to some function d: R - Z=0. (not recessarily N=112) <u>Clarim1</u>: R is not a field

36/
$$\psi \notin \mathbb{R}^{\times}$$
 since $\psi \neq z \in \mathbb{R}^{\times} = 3 \pm 18$ by Lemma 1
By Usin 1, we can another the set $X = \{a \in \mathbb{R} : a \neq 0, a \notin \mathbb{R}^{\times}\}$
Note: $X \neq \emptyset$ since $\psi \in X$.
Let $u \in X$ so that $W(w) = \min i W(x) : x \in X\}$
Thus, for any $x \in \mathbb{R}$, the Euclidean pulpets of $W:\mathbb{R} \longrightarrow \mathbb{Z}_{\geq 0}$ implies that
 $x = \$u + r$ where $\$, r \in \mathbb{R}$ and $(r = 0 \ z \ (r \neq 0 \ z \ U(r) \leq U(u))$
The definition of u then implies $r = 0 \ \pi \ r \in \mathbb{R}^{\times}$.
(laim 2: There is not $u \in \mathbb{R}$ with this property.
31/ By Lemma 1 (above), we conclude our remainders have may 3 optimes $r = 0, 1, -1$.
Thus, $|\forall x \in \mathbb{R} \ \exists r \in \{0, 1, -1\}$ such that u divides $x - r$ in \mathbb{R} (3)
In particular, for $x = z \in \mathbb{R}$, we must have $u \mid z, 4 \ \pi \ 3$ in \mathbb{R} .
Since $u \in X$, we have $u \notin \mathbb{R}^{\times}$, so $u \neq 1$. This leases z optimes: $u \mid z \ \sigma u \mid 3$.
Nort, we draw $\mathbb{Z}[w]$ $z \ u \notin \mathbb{R}$ to $determine the location of u .
 $\frac{1}{2^{2}} \frac{1}{2^{2}} \frac{1}{2$$

We that the two possibilities : u|z => u|3 in R and enclude non an possible. <u>CASEI</u>: u divides z u R, ie $\exists v \in R$ with z = uv $\Rightarrow |u|^2 |v|^2 = |z|^2 = 4$. <u>Note</u>: If $a + bw \in R$, we have $|a + bw|^2 = |(a + \frac{b}{2}) + \frac{b}{2} \sqrt{-19}|^2 = (a + \frac{b}{2})^2 + \frac{19}{4} b^2$

so lateul²≥s if b≠o (beence, s∈2) 3
Two,
$$|u|^{4}|v|^{2} = 4 \implies u, v \in \mathbb{Z}$$
, so $(|u|^{2}=4 |v|^{2}=1)$ so $(|u|^{2}=1 |v|^{2}+1)$
The second optim is unt produble by bomma, since $|u|^{2}=1 \implies u \in \mathbb{R}^{\times}$ (add)
Then, $u=\pm 2$ a $v \in \mathbb{R}^{\times}$.
Then, taking $x=w$ in (K) we get $u=\pm 2|w|, w-1$ if $w+1$ is \mathbb{R} .
Then, $t=\pm 2|^{2}=4||w|^{2}, |w-1|^{2}$ so $|w+1|^{2}$ if \mathbb{Z} . This is impossible since
 $|w|^{2}=|w-1|^{2}=s$ a $|w+1|^{2}=7$ a them are all paine numbers.
CASE2: u divideo 3 w R, is $\exists v \in \mathbb{R}$ with $\exists =uv$
 $\Rightarrow |u|^{2}|v|^{2}=|3|^{2}=9$.
As with case 1, we have $|x|=0, 122 > s$ if $x \in \mathbb{R}$, so $|u|^{2}=9$ a $|v|^{4}=1$ is
the adjustical optim because $u \notin \mathbb{R}^{\times}$. Thus, $u=\pm 3$.
As before, taking $x=w$ in (K) synthlis $u=\pm s$ $|w|=1^{2}=5$ $|w|=1^{2}=7$,
the lady obtic optim because $u \notin \mathbb{R}^{\times}$. Thus, $u=\pm s$ $|w|=1^{2}=5$ $|w|=1^{2}=7$,
the lady obtic optim because $u \notin \mathbb{R}^{\times}$. Thus, $u=\pm s$ $|w|=1^{2}=5$ $|w|=1^{2}=7$,
the last divisibility stationant cannot occure.
Theorem 2: The axing $\mathbb{R} = O((J=9)$ is a PID.
In order the prove the statement, we use an cancellising const.
Definition: Let \mathbb{R} be an integral domain and $N:\mathbb{R} \longrightarrow \mathbb{Z}_{00}$ a function with $N_{0}>0$.
We say the worm is protive if $N_{0}=0$ (so $x=0$.
A pointion solver $N:\mathbb{R} \longrightarrow \mathbb{Z}_{0}$ is called a Dedukind-Hassee norm if for avery
songues $a, b \in \mathbb{R}$ withen $a \in (b)$ if $\exists c \in (a, b)$ with $N(c) < N(b)$. That is,
where b is $u \in \mathbb{R}$ is $z \in \mathbb{R}$ with $0 < N(s_{2}-tb) < N(b)$.
Remarks: For a Euclidean domain with $uept$ is a protive Dedekind-Hassee norm,
Here $a = 11b$.
Remarks: It \mathbb{R} be an integral domain. If \mathbb{R} has a protive Dedekind-Hassee norm,
Here \mathbb{R} is $u = 12b$.
The count is strongen: the convect is also time. However, we will us used it here:
 $\frac{1}{10}$.

<u>Proof</u>: Let I G R be a non-zeus ideal & lit be I with N(b) = min {N(x) : x e I doff 4 Assume aEI 1408, so (a, b) = I. The minimality of N(b) together with the D-H norm projecting implies b|a, so $a \in (b)$. Thus I = (b), as we wanted Proof of Theorem 2: By Lemma Z, it is enough to show that R = Z [1+ 5-19] has a positive D-H norm, namely N (a + b w) = $(a + \frac{b}{2})^2 + 19 \frac{b^2}{4} = a^2 + ab + \frac{b^2}{4} + 19 \frac{b^2}{4} = a^2 + ab + 5b^2$. We know N(a+5w) = |a+5w|² so N is a pritire norm on R. . N is a multiplicative norm. · Let &, BER, for with d & R. We must find s, tER with O<N(sK-tr)<N(r) Since N is multiplicative, this is equivalent to requiring 0< N(x s-t)<1. Since $\underline{\mathcal{A}} \in \mathbb{Q}(\overline{H})$, we write $\underline{\mathcal{A}} = \underline{a+b}\overline{-H}$ with $a,b,c\in\mathbb{Z}$ with us common divisor \mathcal{R} C > 1 (because $\underline{\mathcal{K}} \notin \mathbb{R}$) The endition gcd (a, b, c) = 1 =>] ×, y, ZEZ with ex+by+cz=1 We treat 5 cases for c > 1 m Z & find suitable s, t E R with N(<u>a</u>s-t) < 1 for each case CASEI: Assume C75 Let N = ay - 195x E Z & apply the division algorithm by c in Z to set ay - 19bx = cq + r with $|r| \leq \frac{6}{2}$ (instead of $r \in [0, c)$) Take S=y+x J-19 & t=q-2 J-19 We have: \cdot s, te R $\cdot \frac{d}{B} S - t = \frac{q + b - 19}{c} (y + x - 19) - (q - 2 - 19) = \frac{(ay - 19bx - cq)}{c} + \frac{(ax + by + cz)}{c} - \frac{19bx}{c} - \frac{cq}{c} + \frac{(ax + by + cz)}{c} - \frac{19bx}{c} - \frac{cq}{c} + \frac{(ax + by + cz)}{c} - \frac{19bx}{c} - \frac{cq}{c} + \frac{(ax + by + cz)}{c} - \frac{19bx}{c} - \frac{cq}{c} + \frac{(ax + by + cz)}{c} - \frac{19bx}{c} - \frac{cq}{c} + \frac{(ax + by + cz)}{c} - \frac{19bx}{c} - \frac{cq}{c} + \frac{(ax + by + cz)}{c} - \frac{19bx}{c} - \frac{cq}{c} + \frac{(ax + by + cz)}{c} - \frac{19bx}{c} - \frac{cq}{c} + \frac{(ax + by + cz)}{c} - \frac{19bx}{c} - \frac{cq}{c} + \frac{(ax + by + cz)}{c} - \frac{19bx}{c} - \frac{cq}{c} + \frac{19bx}{c} - \frac{cq}{$ $= \frac{\Gamma}{C} + \left(\frac{ax+by+cz}{c}\right)\sqrt{-12} = \frac{\Gamma}{C} + \frac{1}{C}\sqrt{-19}$

$$\Rightarrow 0 < N(\frac{\alpha}{6}S-t) = \left(\frac{r}{c}\right)^{2} + \frac{19}{c^{2}} \le \left(\frac{1}{c}\right)^{2} + \frac{19}{c^{2}} = \frac{1}{4} + \frac{19}{c^{2}}$$

$$\frac{(laim: Since c \ge 5 we get the desired condition 0 < N(\frac{\alpha}{6}S-t) < 1.$$

$$\frac{1}{9} + \frac{19}{c^{2}} < 1 \iff c^{2} + \frac{19 \cdot 4}{19 \cdot 4} < 4c^{2} \qquad \left(\frac{76}{3} = 26\right) \text{ so the statement is fue}$$

$$\frac{76 < 3c^{2}}{16 < 3c^{2}} \qquad 17 < 26.$$

$$\text{IF } c = 5, \text{ then } |r| \le 5/2 \& r \in \mathbb{Z} \implies |r| \le 2 \implies r^{2} + 19 \le 23 < 25.$$

Thus, it umains to Tacat the cases c = 2, 3 or 4. We do this by hand.

CASE Z: Assume C=2 The conditions ged (a, b, c) = 1 and $\underline{x} \notin \mathbb{R}$ implies that me of a or b is even and the other one is odd. Taking s = 1 and $t = (a-1) + b \sqrt{-19}$ we get \cdot s, t \in R $\frac{d}{8}s - t = \frac{a + b \sqrt{-19}}{2} - \frac{(a - i) + b \sqrt{-19}}{2} = \frac{1}{2}$ satisfies $0 < N(\frac{\kappa}{R}s-t) = \frac{1}{4} < 1$, as we wanted CASE 3: Assume C=3 Since SCL(a, b, 3) = 1, the integer $N(a+b-19) = a^2 + 19b^2$ is not derivable by 3 (bleause à + 5 =0 mol3 (=> a=b=0 mol3) Write a2+1962 = 39+1 1> 9, TEZ with r=1,2. Taking $s = a - b \overline{b}$ and t = q we get: .s,teR $\frac{\alpha}{10} s - t = \frac{\alpha + 1}{2} \left(\frac{\alpha - 5}{19} \right) - q = \frac{\alpha^2 + 19b^2}{3} - q = \frac{\Gamma}{3} = \frac{1}{3} \frac{\pi}{3} = \frac{1}{3} \frac{\pi$ In both cases: $0 < N \left(\frac{\kappa}{2} s - t \right) \leq \left(\frac{2}{3} \right)^2 = \frac{4}{3} < 1$ CASE4: Assume c=4 Since scela, 5, 4)=1, we see that a and b are not both even. We have 2 optims. (1) It as b have different parity (me un sme odd), then N (a+b1-19) = a2+19 5 is odd. Then, dividing a2+19b2 by 4 in Z we get $a^2 + 19b^2 = 49 + \Gamma$ for some $q, r \in \mathbb{Z}$ with r = 1, 3. Taking $s = a - b \sqrt{-19}$ and t = 9 we get: · s,t ER

 $\frac{d}{6}s - t = \frac{a + b \sqrt{-19}}{4} (a - b \sqrt{-19}) - q = \frac{a^2 + 19 \sqrt{2} - 4q}{4} = \frac{c}{4} = \frac{1}{4} \frac{32}{9}$ In both cases, $0 < N(\frac{d}{6}s - t) \le (\frac{3}{9})^2 = \frac{q}{16} < 1$.

5

(2) If both a e b are odd, then
$$a^2 + 19b^2 \equiv 1 + 19 \equiv 4 \mod 8$$
 $(x = \pm 1, \pm 3 \mod 8)$
Thus, $a^2 + 19b^2 \equiv 8 \cdot q + 4$ for some $q \in \mathbb{Z}$.
Taking $s = \frac{q - b \int -19}{2}$ and $t = q$ we set:
 $s, t \in \mathbb{R}$
 $\cdot \frac{q}{8}s - t = \frac{q + b \int -19}{4} \left(\frac{q - b \int -17}{2}\right) - q = \frac{a^2 + 19b^2}{8} - q = \frac{8q + 4}{8} - q = \frac{1}{2}$
Thus, $0 < N\left(\frac{d}{8}s - t\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} < 1$.

$$\frac{\$49.3 \text{ Summary}:}{\text{We have proven the following}}$$

$$\frac{\text{Theorem:}}{\text{Theorem:}} \text{ We have strict inclusions}$$

$$\frac{\text{Tields} \subsetneq \text{Euclidean domains} \lneq \text{Brincipal Ideal} \backsim \text{Neetherian domains}}{\#\mathbb{Z} \in \mathbb{Z}} \text{ Superfluence of the strict inclusions}}$$

Q: What next? Unique Factorization Domains (next Time)