Lecture L: Unique Factorization domains

1

Study a new class of rings (UFDs) & relate them to the other notions. TODAY'S GOAL : \$ 50.1 Definition: In order to state what U.F.D.'s are, we need some terminology Definition: Let R be an integral domain . a ∈ R is said to be an inducible element if a ≠ 0, a ∉ R* and his any x, y ∈ R we have : if a = xy, then either x or y is a whit in R. . $a \in \mathbb{R}$ is said to be a prime element if $0 \neq (a) \subsetneq \mathbb{R}$ is a prime ideal (ie $xy \in (a) \implies x \in (a)$ $n y \in (a)$) Lemma: Prime elements in a domain au ineducible. Broch: Fix q E R a prime element, so a to a & RX. Assume a = xy with x, y e R. Thun xy e (a) => x e (a) or y e (a) a vim Without Loss of generality, assume × e(a), so JZER with × = aZ. \Rightarrow a = xy = azy, ie a(1-zy) = 0Since Ris a domain and a =0, we conclude 1-zy=0, il yER. Thus a is ineducible Proposition ! Let R be a PID, and a # 0. Then, a is prime if, and may if a is ineducible Proof; (=>) Follows from the Lemma (\leq) We assume $a \in \mathbb{R}$ is inclucible, so $a \neq 0$ a $a \notin \mathbb{R}^{\times}$. We want to show (a) is prime We show that (a) is maximal Pick ICR ideal with (a) CI. Since R is a PID, then I x CR with I=1x) Thus a e (x), maning] reR with a = xr Since a is ineducible, we have either XERX (so I=R) or FERX (so X=ar) thus $(a) \subseteq (x) \in [a]$, yiving (a) = I). We enclude: if I is an ideal with $(a) \subseteq I$, then I = (a) or I = R. This implies (a) is maximal, hence prime. D

Detailin: We say a sing R is a unique tradisization domain (UPD Sorebott) if for
every
$$n \in \mathbb{R}$$
, $n \neq 0$, $n \notin \mathbb{R}^{V}$ we have
(1) n can be written an allinite) product of incducible elements (not accountly
distinct) $1, \dots, n \in \mathbb{R}$: $n = P_1P_2 \cdots P_m$
(2) if $n = 3, \dots, 3_{\mathbb{R}}$ for $3, \dots, 3_{\mathbb{R}}$ incducible, then $n = 1$ and, up to
promutations, the si's an estated to $p_1''s$ by units of R.
Iteoring: $\exists \sigma \in S_m$ and units $u_{1,r}, \dots, u_m \in \mathbb{R}^{\times}$ st $u_1's_1' = P_{P_{1,1}}$, $W_{1=2,\dots,N}$
esoz Examples:
(0) $\mathbb{R} = \mathbb{Z}$
. Painte elements of \mathbb{R} are prime numbers
 \mathbb{Z} is a UFD (Fundamental Theorem of A arthentic) $\mathbb{Z}^{\times} = \frac{3}{2}\frac{1}{15}$
(2) $\mathbb{R} = \mathbb{Z} \begin{bmatrix} 1-s_1 \end{bmatrix}$ is not a PID (Theorem \$98.9). Using Proposition \$50.1, we
can give an alternative proof.
Lemman $3 \in \mathbb{R} = \mathbb{Z}[[-S_1]]$ is inclucible, but not prime
 $\frac{3 \operatorname{end} 1}{3} = |\alpha|^{15} |A|^{2} with |\alpha|_{1}|A| \geq \mathbb{Z}$ $(\mathbb{R} = \mathbb{U}_{(1-s)})$ is not $-S \equiv s$ under
We spit a splitting $N(-) = 1 + \frac{1}{5}$ $(-sco)$, we get
 $g = 1 + \frac{1}{5} = |\alpha|^{15} |A|^{2} with |\alpha|_{1}|A| \geq \mathbb{Z}$ $(\mathbb{R} = \mathbb{U}_{(1-s)})$ is an $-S \equiv s$ under
We spit $2 + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = 3$.
By construction $d = a + b + 5 = with $a_1 + c \in \mathbb{Z}$ $D + 1 = 4^{15} + 5^{15} = 5$ if $\frac{1}{5} + 5^{15} = 1$
 $(a + \frac{1}{5} = 1$
 $B_1 = a + b + 5 = with $a_1 + c \in \mathbb{Z}$ $D + 1 = 4^{15} + 5^{15} + 5 = 6 = (5)$
but $1 \pm 5 = 0$, $0 + \frac{1}{5} + \frac{1}{5} = (-5 + 5) = 1 + 5 = 6 = (5)$
but $1 \pm 5 = \frac{1}{5} = (-5) = 0 + 1 = 1 = 1 + 5 = 6 = (5)$
but $1 \pm 5 = \frac{1}{5} = 0 = 0$ otherwite, $1 \pm 5 = 3 = 0 + 2 = 0$ with $1 \pm 5 = 3 = 1 + 5 = 6 = (5)$
but $1 \pm 5 = \frac{3}{5} = 0$. Otherwite, $1 \pm 5 = 3 = 3 = 0 + 2 = 0$ with $1 \pm 5 = 3 = 1 + 5 = 6 = (5)$
but $1 \pm 5 = \frac{3}{5} = 0$. Otherwite, $1 \pm 5 = 3 = 3 = 0 = 2 = 0$ with $1 \pm 5 = 3 = 1 + 5 = 6 = (5)$
but $1 \pm 5 = 3 = 0$ with $a \in \mathbb{Z}$ (Artandicites !$$

\$ 50.3 Main result:

Theorem: Every PID is a UFD. In particular, every Euclidean domain is a UFD. In order to prove this statement, we will need the following result Proprietin: In a UFD, a non-zero element is a prime if, and only if, it is irreducible <u>Proof:</u> (=>) is The for any domain by Lemma 250.1. (<=) Let a ER be an ineducible element and assume x, y ER with xy E(a) Thus Jze R with xy = az Writing x & y as a product of inducibles & using the fact that a is inducible the uniqueness factorization says a agrees (up to a unit in R*) with an ineducible of either x or y. Note that we cannot have both x, y E R* since a & R*. Assume it is x. Thus, we have x = (ua) p2--pn with uER* and 3 P2, P3, ..., Pn3 (a possibly empty) set of ineducibles. Thus a 1 x is x E (a) as we wanted. Broof of Theorem: Since any Euclidean domain is a PID, we need may prove the first part of the statement. Let rER with r≠0 & r∉ R*. We want to show existence and uniqueness of the factorization of r. Existence : We that 2 coses, depending n whether r is ineducible or not. CASEI : It r is ineducible, there is nothing to do CASE 2: It r is not imeducible, then] ri, rz & RX with r=rirz, so re(ri) . If both these elements are irreducible, there is nothing to do · Otherwise, one of them is reducible, say r, . We have r, & (r) because r, & R*. Then $\exists r_{11}, r_{12} \notin \mathbb{R}^{\times}$ with $r_1 = r_{11}r_{12}$ We can entinue in this way To produce an ascending chain of ideals $(r) \neq (r_1) \neq (r_n) \neq \cdots \in \mathbb{R}$ (*) $\vec{\mathbf{I}}_{1}$ $\vec{\mathbf{I}}_{2}$ $\vec{\mathbf{I}}_{3}$ Take $J := \bigcup_{k \ge 1} I_k$. This is an ideal of R. Since R is a PiD, we

4 know $\exists a \in R$ with J = (a). Let $n \in N$ with $a \in I_n \implies J \subseteq J_n$ Then $I_n \subseteq I_{n+s} \subseteq J \subseteq I_n \implies I_n = I_{n+1} = I_{n+2} = \cdots = (a)$ This shows the chain (*) is stationary, so at some point the construction of inducible factors of r stops. Uniqueness: We proved by induction on the number of ineducible factors of sme factorization of r. Base case: n=0, then rER*. If r=gc frome other factorization with g ined, then gainides the writ r, meaning q is also a unit. Control. Inductive Step: Assume NZI & r has z factorizations $\Gamma = P_1 \cdots P_n = \varphi_1 \varphi_2 \cdots \varphi_m$ (*) with man. Since p, is ineducible, Proprition implies it is prime. Then, since pillq; "qm) we can find jE31, -- ; m't with pilq;. After reshuffling, we may assume j=1. Then, q,=p, u with uER. Since q, is included a p, & R*, we conclude that u e R*. Thus, p, & q, an associates. Thus (*) because pp p2---pn = up q2---qm Concelling p, from both sides, we enclude that $s = p_2 \cdots p_n = (uq_2)q_1 \cdots q_m$ has 2 factorizations with n-15m-1 inclucibles ((452) is inclucible), the (1H) insures n-1=m-1 & FOES, and uz,..., un ERX such that uiqi = Pori for all i=2,..., m_ hubining this with u,=u & JII)=1, the statement follows.

Crolley 1 (Fundamental Theorem of Arithmetic) Z is a UFD.

Crollany 2 : For every field K, K(x] is a UFD. Corollany 3 : Z[i] is a UFD

(If you are unious about what do factorizations in Z[i] Look like, you can look at Section \$8.3 in the textbook)

(1) For the proof of the Theorem, we didn't need to invoke the Lemma since we know that on a PID every inclucible element is antimatically prime.
(2) We used the PID to show the existence of a factorization but we didn't need the PID endition for the proof of aniquenes. Uniqueness did use that inclucible elements are prime.
(3) As a consequence of their, our proof applies to more general cases. Plote precisely coollong 4: Assume R is a domain satisfying
(1) every AER, a \$0, a ER* admits a factorization as a finite product of inclucible elements.

(2) Rmy ineducible element of R is prime. Then, R is a UFD