1

Recell: Last time we defined UFDs and we prove: <u>Lemma</u>: In a UFD, ineducible elements are prime. <u>Theorem 1:</u> Any PID is a UFD. In particular, any Euclidean Lomain is a UFD. <u>Corolley 1:</u> Z, K[x] (K field) and Z[i] are UFDs.

\$51.1 Greatest Common Divisors in UFDs:

Theorem: In a UFD, gcds exist. White $n = \pm p_1^{e_1} \cdots p_r^{e_r}$ enter ≥ 1 p_1, \dots, p_r distinct primes (protive) $m = \pm q_1^{e_1} \cdots q_s^{e_s}$ $f_1, \dots, f_s \ge 1$ q_1, \dots, q_s

We assume $p_1 = q_1, \dots, p_t = q_t$ and the remaining primes are all distinct, meaning $3p_{t+1}, \dots, p_r \in \{0, 3, q_{t+1}, \dots, q_s\} = \emptyset$. Then $g_{cd}(n, m) = p_1$ with $3e_{t}, f_{t+1}$ $\dots = p_t$

. The same method works for other UFDs.

Let R be a UFD and 9, 5 ER - 30%. Write

$$a = u p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}$$
 and $b = v p_1^{f_1} p_2^{f_2} \cdots p_n^{f_n}$

where
$$u, v \in \mathbb{R}^{\times}$$

 p_{1}, \dots, p_{n} are non-associated primes/ined. elements of \mathbb{R}
 $e_{1}, \dots, e_{n}, f_{2}, \dots, f_{n} \in \mathbb{Z}_{\geq 0}$

Lemma: $gcd(a,b) := p_1$ winder, $f_1 t$ winder, $f_n t$ is the greatest common

divisor between a 26.

$$\frac{3uoh:}{b} = d\left(\underbrace{p_1}^{e_1 - uin be_1, e_1 t} \cdots p_n^{e_n - uin be_n, e_n t}\right)$$

$$= d\left(\underbrace{p_1}^{e_1 - uin be_1, e_1 t} \cdots e_n \cdots e_n, e_n t\right)$$

$$\in \mathbb{R}$$

(2) is also chan since prime / inclucible elements occuring in the deem proitin of c have to be associate to those in the subset $\{p, \dots, p_n\}$. Furthermore, the expression of p_j in c has to be $\leq e_j$ and f_j , so it's $\leq \min\{e_j, f_j\}$.

<u>\$51.2 Northerian rings :</u>

 $(\underline{\text{Ascending Chain (modition})} \quad Given any ascending chain of ideals in <math>\mathbb{R} \quad I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ there exists $n \ge 1$ such that $I_n = I_{n+1} = \cdots$

$$\frac{N_{2}m - example :}{1 + 1} \quad \text{Let } R = aing of entineous functions (and-valued) of one (and) variable x.}$$
$$= \{f: R \longrightarrow R \quad \text{entineous}\}$$
$$I_n := \{f \in R : f_{(X_1)=0} \quad \forall x \in [-\frac{1}{n}, \frac{1}{n}]\} \quad \text{for } n = 1, 2, 3, \dots$$
$$As \quad [-1, 1] \supseteq [-\frac{1}{2}, \frac{1}{2}] \supseteq [-\frac{1}{3}, \frac{1}{3}] \supseteq \dots \quad \text{we get } I_1 \subseteq I_2 \subseteq I_3 \subseteq I_4 \subseteq \dots$$
$$\underbrace{Exercise :} \quad \text{This chain never stops in it doesn't stabilize as in the endition defining Noetheric nings.}$$

. Before giving exemples of Northerian rings, we need the following two equivalent ways of proving ³ that a ring R is Northerian.

We claim that I, = I, hence I is finitely generated.

We argue by entradiction , If
$$I_1 \subseteq I$$
, $\exists a \in I \setminus I_1$. Then $I_2 = I_1 + (a)$
satisfies . I_2 is a finilely generated (head of R
 $I_2 \subseteq I$
This intradicts the maximality of I_1 as an element of X . Thus, $I_1 = I$ as we wanted. \Box
(2)=>(1): We check the (ACC) holds for R .
Assume we are given an asunding chain of ideals $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ (4)
Take $I = \bigcup I_j \subseteq R$. Then, I is an ideal $(I = \sum_{j \ge I} I_j)$ became $I_n \subseteq I_{n+1} \forall r)$
By (c), I is finitely generated, if $I = (a_1, \dots, a_N)$ for time finite number of elements
 $a_{1, \dots, a_N} \in I$.
By definition of $I = \exists k_{1,k_2,\dots,k_N} = t$ $q_i \in I_{k_1}$
 $a_{N} \in I_{K_N}$
Take $M = \max\{k_{1,\dots,k_N}\}$. Then, $a_{1,k_2,\dots,k_N} \in I_H \subseteq I_{H+1} \in \cdots$
This given $I \subseteq I_H \subseteq I_{H+1} \subseteq I_{H+2} \subseteq I$ $\forall l \ge 0$. Hence, $I_H = I_{H+1} = \cdots = I$
We enclude the chain (4) stabilizers

\$51.3 Examples:

(1) Every principal ideal ring is Northerian

$$[\underline{Recall}: R is a principal ideal ring if every ideal I has the form I=(a))
Principal ideal
Examples: R = K any held; Z; K[x]; KIx]; Z'nZ, Z[i]
N=22
(2) If R = K[x1, x2, ..., xn, ...] is a polynomial ring in individing many variables,
then R is not Northerian since I = (x1, x2,) cannot be generated by finitely
many elements
Reason: Assume I = (F1, ..., Fr) for some h1, ..., Fr ∈ R. By construction, each
h; involves mly finitely many variables, so $\exists n$ with $h_1, ..., h_r \in K[x_1, ..., x_n]$
 $f_i \in I \implies \exists g_{1, ..., S_{2i}}^{(i)} \in R$ with $f_i = \sum_{j=1}^{2i} g_{j(x_j)}^{(j)} x_j$ (x)
As before, $\exists m \ge n$ such that all polynomial above die in $K[x_1, ..., x_n]$.$$

Evoluciting (K) in
$$x_1 = \dots = x_m = 0$$
, we get $h_i(\underline{0}) = \sum_{j=1}^{s_i} g_j^{(i)}(\underline{0}) \cdot 0 = 0$.
Ulain: $x_{n+1} \notin (f_{1}, \dots, f_{c})$
We argue by antiadictine. Assume $x_{n+1} = \sum_{i=1}^{c} h_i(\underline{x}) \quad f_i(x_1, \dots, x_n)$
b involving for the sides $e^{\frac{1}{2}} x_1 = x_2 = \dots = x_n = 0$. we get:
 $x_{n+1} = \sum_{i=1}^{c} h_i(0, \dots, 0, x_{n+1}, \dots) \quad f_i(0, \dots, 0) = 0$ Cartadictin!
 $= 0$

(3) Main example will be provided by Hilbert Basis Thrown: R Noetherran -> R(x) is Noetherran. From here we see that R[x1,..., xn] is Noetherran for each ring R which is Noetherran (Examples: R=Z, K any field) We will see Hilbert Basis The in a future lecture.